Cho tam giác ABC vuông cân tại A.Vẽ tam giác DAB vuôg cân tại D(D và C khác phía đối với AB).E nằm giữa A và D, qua E kẻ đường thẳng vuông góc với BE cắt AC tại F.CMR : tam giác EBF vuông cân tại E
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AC=AB=5cm
AE=căn 5^2-4^2=3cm
b: góc EAC+góc BAD=90 độ
góc BAD+góc ABD=90 độ
=>góc EAC=góc ABD
Xét ΔEAC vuông tại E và ΔDBA vuông tại D có
AC=BA
góc EAC=góc ABD
=>ΔEAC=ΔABD
=>AD=CE
c: BD^2+CE^2=BD^2+AD^2=AB^2 ko đổi
a) Vì D nằm trên tia đối của HA
=> BH\(\perp\)HD
Xét 2 \(\Delta BHA\) và \(\Delta BHD\)có :
HA = HD (gt)
\(\widehat{BHA}\) = \(\widehat{BHD}\)
BH là cạnh chung
=>\(\Delta BHA\)= \(\Delta BHD\)(c.g.c)
=>\(\orbr{\begin{cases}\widehat{ABH}=\widehat{DBH}\\AB=BD\end{cases}}\)
Xét 2 \(\Delta ABC\)và \(\Delta DBC\)có:
AB=AD (cmt)
\(\widehat{ABC}\) = \(\widehat{DBC}\)(cmt)
BH là cạnh chung
=> \(\Delta ABC=\Delta DBC\)(c.g.c)
Mà \(\Delta ABC\)vuông cân
Nên \(\Delta DBC\)vuông cân
Vậy \(\Delta DBC\)vuông cân (đpcm)
b) Vì \(\Delta ABC\)vuông cân tại A
=> \(\widehat{ABC}=\widehat{ACB}=\frac{90^o}{2}=45^o\)
Vì \(\Delta DBC\)vuông cân tại D
=>\(\widehat{DBC}=\widehat{DCB}=\frac{90^o}{2}=45^o\)
Ta có: \(\widehat{ABC}+\widehat{DBC}=90^o\)
Mà \(\widehat{ABC}+\widehat{DBC}=\widehat{ABD}\)
=> \(\widehat{ABD}=90^o\)
Ta có \(\widehat{DBE}+\widehat{ABE}=\widehat{ABD}=90^o\)
\(\widehat{FBA}+\widehat{ABE}=\widehat{FBE}=90^o\)(vì FB\(\perp\)BE)
=> \(\widehat{DBE}=\widehat{FBA}\)
Xét 2 \(\Delta\) ABF và \(\Delta\) DBE có:
\(\widehat{FBA}=\widehat{EBD}\)
AB = BD
\(\widehat{BAF}=\widehat{BDE}\left(=90^o\right)\)
=>\(\Delta ABF=\Delta DBE\)(g.c.g)
=> BE=BF ( 2 cạnh tương ứng)
Vậy BE=BF (đpcm)