Gieo hai con xúc xắc cân đối và đồng chất. Gọi \(A\) là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc bằng 5”, gọi \(B\) là biến cố “Xuất hiện hai mặt có củng số chấm”. Hai biến cố \(A\) và \(B\) có thể đồng thời cùng xảy ra không?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tập hợp mô tả các biến cố:
`A: { (1, 4), (2, 3), (3, 2), (4, 1) }`
`B: { (1, 6), (2, 3), (3, 2), (6, 1) }`
b) Các kết quả khi cả hai biến cố A và B cùng xảy ra:
`{ (2, 3), (3, 2) }`
$HaNa$
gieo 2 con xúc xắc cân đối và đồng chất gọi k là biến cố 'số chấm trên 2 lần gieo có tổng bằng 8 'tính xắc xuất của biến cố k?
a) Kết quả của phép thử là một cặp số (a;b) trong đó a, b lần lượt là số chấm xuất hiện trên con xúc xắc thứ nhất và thứ hai, suy ra:
\(B = \left\{ {(1;1),(2;2),(3;3),(4;4),(5;5),(6;6)} \right\}\)
\(C = \left\{ {(2;1),(4;2),(6;3)} \right\}\)
b) Từ tập hợp mô tả biến cố ở câu a) ta có:
Có 6 kết quả thuận lợi cho biến cố B
Có 3 kết quả thuận lợi cho biến cố C
A={3;6}
B={4}
Hai biến cố này không thể đồng thời xảy ra được vì \(A\cap B=\varnothing\)
Ta có: \(A = \left\{ {\left( {1;1} \right);\left( {1;3} \right);\left( {1;5} \right);\left( {3;1} \right);\left( {3;3} \right);\left( {3;5} \right);\left( {5;1} \right);\left( {5;3} \right);\left( {5;5} \right)} \right\}\).
\(B\) là biến cố “Tổng số chấm xuất hiện là số lẻ”
\(\begin{array}{l} \Rightarrow B = \left\{ {\left( {1;2} \right);\left( {1;4} \right);\left( {1;6} \right);\left( {2;1} \right);\left( {2;3} \right);\left( {2;5} \right);\left( {3;2} \right);\left( {3;4} \right);\left( {3;6} \right);\left( {4;1} \right);\left( {4;3} \right);\left( {4;5} \right);} \right.\\\left. {\left( {5;2} \right);\left( {5;4} \right);\left( {5;6} \right);\left( {6;1} \right);\left( {6;3} \right);\left( {6;5} \right)} \right\}\end{array}\)
Vậy hai biến cố \(A\) và \(B\) xung khắc.
Chọn B.
Không gian mẫu là tập hợp số chấm xuất hiện khi gieo con xúc xắc hai lần liên tiếp khi đó \(n\left( \Omega \right) = 6.6 = 36\)
A = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)} \( \Rightarrow P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\)
B = {(1; 2); (2; 2); (3; 2); (4; 2); (5; 2); (6; 2)} \( \Rightarrow P\left( B \right) = \frac{6}{{36}} = \frac{1}{6}\)
C = {(2; 6); (3; 5); (4; 4); (5; 3); (6; 2)} \( \Rightarrow P\left( C \right) = \frac{5}{{36}}\)
D = {(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)} \( \Rightarrow P\left( D \right) = \frac{6}{{36}} = \frac{1}{6}\)
Do đó
\(P\left( A \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( B \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( C \right).P\left( D \right) = \frac{5}{{36}}.\frac{1}{6} = \frac{5}{{216}}\)
Mặt khác
AC = \(\emptyset \Rightarrow P\left( {AC} \right) = 0\)
BC = {(6; 2)} \( \Rightarrow P\left( {BC} \right) = \frac{1}{{36}}\)
CD = \(\emptyset \Rightarrow P\left( {CD} \right) = 0\)
Khi đó \(P\left( {AC} \right) \ne P\left( A \right).P\left( C \right);P\left( {BC} \right) \ne P\left( B \right).P\left( C \right);P\left( {CD} \right) \ne P\left( C \right).P\left( D \right)\)
Vậy các cặp biến cố A và C; B và C, C và D không độc lập.
a: \(\Omega=\left\{\left(1;1\right);\left(1;2\right);\left(1;3\right);...;\left(6;5\right);\left(6;6\right)\right\}\)
b: A={(1;2); (2;1)}
=>P(A)=2/36=1/18
B={(4;1); (5;2); (6;3); (1;4); (2;5); (3;6)}
=>P(B)=6/36=1/6
E = {(2,2); (2, 4); (2, 6); (4, 2); (4, 4); (4, 6); (6, 2); (6, 4); (6, 6)}
F = {(1,2); (1, 4); (1, 6); (3, 2); (3, 4); (3, 6); (5, 2); (5, 4); (5, 6)}
K = {(2,2); (2, 4); (2, 6); (4, 2); (4, 4); (4, 6); (6, 2); (6, 4); (6, 6); (1,2); (1, 4); (1, 6); (3, 2); (3, 4); (3, 6); (5, 2); (5, 4); (5, 6)}
Vậy K là biến cố hợp của E và F
E={(2;2); (2;4); (2;6); (4;2); (4;4); (4;6); (6;2); (6;4); (6;6)}
F={(1;2); (2;1); (1;4); (4;1); (1;6); (6;1);(2;3); (3;2); (2;5); (5;2); (3;4); (4;3); (3;6); (6;3); (5;4); (4;5); (6;5); (5;6)}
K={(2;2); (2;4); (2;6); (4;2); (4;4); (4;6); (6;2); (6;4); (6;6); (1;2); (2;1); (1;4); (4;1); (1;6); (6;1);(2;3); (3;2); (2;5); (5;2); (3;4); (4;3); (3;6); (6;3); (5;4); (4;5); (6;5); (5;6)}}
=>K là hợp của E và F
Việc xảy ra biến cố A không ảnh hưởng tới xác suất xảy ra của biến cố B, và ngược lại, việc xảy ra biến cố B cũng không ảnh hưởng tới xác suất xảy ra của biến cố A vì 2 bạn mỗi người 1 con xúc xắc và gieo đồng thời.
Việc xảy ra biến cố B không ảnh hưởng tới xác suất xảy ra biến cố A và xảy ra biến cố A cũng không ảnh hưởng tới xác suất xảy ra biến cố B là bởi vì hai người này là hai người chơi độc lập, họ gieo 2 con xúc sắc khác nhau
THAM KHẢO:
Hai biến cố A và B không thể đồng thời cùng xảy ra.