Cho tam giác ABC đều,điểm O nằm trong tam giác .Trên cạnh AB',BC,CA lần lượt lấy D,E,F
a) C/m tứ giác ODBC là hình thang cân
b) C/m 3 đoạn OA,OB,OC thõa mãn bất đẳng thức tam giác.Giúp mình nhé!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ∆ABC đều
=> A = B = C
Vì OD // BC ( gt)
=> ODEB là hình thang
Vì OE//AC(gt)
=> C = DEB ( đồng vị)
Mà B = C
=> B = DEB
=> DOEB là hình thang cân
Vì OE // AC
=> EOFC là hình thang
Vì OF//AB
=> A = BFC ( đồng vị)
Mà A = C (cmt)
=> C = BFC
=> EOFC là hình thang cân
Vì OF // AB
=> FODA là hình thang
Mà OD //BC
=> ADF = B
Mà A = B
=> A = ADF
=> FODA là hình thang cân
Vì DOEB là hình thang cân
Mà B = OEB = 60°
=> BDO = DOE = 120°
Chứng minh tương tự ta có
DOE = DOF = FOD = 120°
Trong hình thang cân hai đường chéo bằng nhai
=> OA = DF
=> OB = DE
=> OC = EF
Vì 3 đoạn thẳng OA ; OB ; OC lần lượt là bằng 3 cạnh của ∆DEF
=> 3 đoạn thẳng OA ; OB ; OC thỏa mãn bất đẳng thức tam giác
a) DO, EO, FO cắt CA, AB, BC lần lượt tại D', E', F'
từ các góc đồng vị ta dễ cm ODE'; OEF' và OFD' là các tgiác đều
(tgiác cân có góc = 60o)
=> góc DOE = góc FOE = góc FOD = 180o - 60o = 120o
b) không giãm tính tổng quát giả sử OA là đoạn lớn nhất
nên ta chỉ cần cm OA < OB + OC
Ta cũng dễ cm: AFOE'; BDOF'; CEOD' là các hình bình hành
=> OD = OE' = AF và OD' = OF
trong tgiác AOF ta có OA < AF + OF => OA < OD + OD' (■)
mặt khác trong tgiác OBD có góc ODB = 120o (là góc lớn nhất) => OD < OB (*)
truơng tự trong tgiác OCD' có góc OD'C = 120o là góc lớn nhất => OD' < OC (**)
Từ (■), (*) và (**) ta có:
OA < OD + OD' < OB + OC
Vậy OA, OB, OC là độ dài 3 cạnh của một tgiác nào đó