K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

`#040911`

Vì `3` số `x; y; z` tỉ lệ thuận với `4:7:10`

\(\Rightarrow \dfrac{x}{4} = \dfrac{y}{7} = \dfrac{z}{10} \)

\(\Rightarrow \dfrac{2x}{8} = \dfrac{3y}{21} = \dfrac{4z}{40} \)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{2x}{8} = \dfrac{3y}{21} = \dfrac{4z}{40} = \dfrac{2x + 3y + 4z}{8+21+40} = \dfrac{69}{69}=1\)

\(\Rightarrow \dfrac{x}{4} = \dfrac{y}{7} = \dfrac{z}{10} = 1\)

\(\Rightarrow x = 1.4 = 4 \\ y = 1.7 = 7 \\ z = 1.10 = 10\)

Vậy, \(x = 4; y = 7; z = 10.\)

22 tháng 8 2023

Giải nhanh hộ mik đk ạ

11 tháng 11 2019

a, Vì x, y tỉ lệ thuận với 2; 5 

 \(\Rightarrow\frac{x}{2}=\frac{y}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có: 

\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)

Do đó: \(\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{5}=3\end{cases}}\Rightarrow\hept{\begin{cases}x=6\\y=15\end{cases}}\)

Vậy...

Vì x, y, z tỉ lệ thuận với 8; 14; 20

\(\Rightarrow\frac{x}{8}=\frac{y}{14}=\frac{z}{20}\)\(\Rightarrow\frac{2x}{16}=\frac{3y}{42}=\frac{4z}{80}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{2x}{16}=\frac{3y}{42}=\frac{4z}{80}=\frac{2x+3y+4z}{16+42+80}=\frac{69}{138}=\frac{1}{2}\)

Do đó: \(\hept{\begin{cases}\frac{x}{8}=\frac{1}{2}\\\frac{y}{14}=\frac{1}{2}\\\frac{z}{20}=\frac{1}{2}\end{cases}\Rightarrow}\hept{\begin{cases}x=4\\y=7\\z=10\end{cases}}\)

Vậy...

27 tháng 9 2019

Tham khảo nha bn:https://h.vn/hoi-dap/question/491573.html

3 tháng 12 2017

Vì x;y;z tỉ lệ thuận với 3;4;5 nên \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Theo t/c của dãy tỉ số bằng nhau ta được:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x-y+z}{3-4+5}=\frac{x-y+z}{4}\)

Thay x - y + z = 20 ta được:

\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{20}{4}=5\)

Từ \(\frac{x}{3}=5\Rightarrow x=5.3=15\)

Tương tự với y và z

Nhớ k cho mình nhé! Thank you!!!

3 tháng 12 2017

Vì a,b,c tỉ lệ thuận với 4,7,10 nên \(\frac{a}{4}=\frac{b}{7}=\frac{c}{10}\)

Theo t/c của dãy tỉ số bằng nhau ta có:

\(\frac{a}{4}=\frac{b}{7}=\frac{c}{10}=\frac{2a+3b+4c}{2.4+3.7+4.10}=\frac{2a+3b+4c}{69}\)

Thay 2a + 3b + 4c = 69 ta được:

.........

Tương tự câu a

Nhớ k cho mình nhé! Thank you!!!

12 tháng 7 2016

a) Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2\)

=> x = 2 . 3 = 6 ; y = 2 . 4 = 8

b) Ta có : \(\frac{a}{7}=\frac{b}{9}\)

\(=>\frac{3a}{21}=\frac{2b}{18}=\frac{3a-2b}{21-18}=\frac{30}{3}=10\)

=> a = 10 . 7 = 70 ; b = 10 . 9 = 90

12 tháng 7 2016

c) Ta có : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x-y+z}{3-4+5}=\frac{20}{4}=5\)

=> x = 5 . 3 = 15 ; y = 5 . 4 = 20 ; z = 5 . 5 = 25

d) Ta có : \(\frac{a}{4}=\frac{b}{7}=\frac{c}{10}\)

\(=>\frac{2a}{8}=\frac{3b}{21}=\frac{4c}{40}=\frac{2a+3b+4c}{8+21+40}=\frac{69}{69}=1\)

=> a = 1 . 4 = 4 ; b = 1 . 7 = 7 ; c = 1 . 10 = 10

28 tháng 11 2019

1.

a) Theo đề bài, vì x và y tỉ lệ thuận với 3, 4 nên:

\(\Rightarrow\frac{x}{3}=\frac{y}{4}\)\(x+y=14.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{3}=\frac{y}{4}=\frac{x+y}{3+4}=\frac{14}{7}=2.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{3}=2\Rightarrow x=2.3=6\\\frac{y}{4}=2\Rightarrow y=2.4=8\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(6;8\right).\)

b) Theo đề bài, vì a và b tỉ lệ thuận với 7, 9 nên:

\(\Rightarrow\frac{a}{7}=\frac{b}{9}.\)

\(\Rightarrow\frac{3a}{21}=\frac{2b}{18}\)\(3a-2b=30.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{3a}{21}=\frac{2b}{18}=\frac{3a-2b}{21-18}=\frac{30}{3}=10.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{a}{7}=10\Rightarrow a=10.7=70\\\frac{b}{9}=10\Rightarrow b=10.9=90\end{matrix}\right.\)

Vậy \(\left(a;b\right)=\left(70;90\right).\)

Chúc bạn học tốt!

12 tháng 9 2020

Vì x và z tỉ lệ thuận với 3 và 4 => \(\frac{x}{3}=\frac{y}{4}\)(1)

Vì y và z tỉ lệ thuận với 5 và 7 => \(\frac{y}{5}=\frac{z}{7}\)(2)

Từ (1) và (2) => \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)

+) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{36}{62}=\frac{18}{31}\)

=> x = 18/31 .15 = 270/31

y = 18/31.20 = 360/31

z = 18/31.28 = 504/31

12 tháng 9 2020

x,z tỉ lệ thuận với 3, 4

=> \(\frac{x}{3}=\frac{z}{4}\)(1)

y, z tỉ lệ thuận với 5, 7

=> \(\frac{y}{5}=\frac{z}{7}\)(2)

và 2x + 3y - z = 36 (3)

Từ (1), (2) và (3)

=> \(\hept{\begin{cases}\frac{x}{3}=\frac{z}{4}\\\frac{y}{5}=\frac{z}{7}\\2x+3y-z=36\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{3}\times\frac{1}{7}=\frac{z}{4}\times\frac{1}{7}\\\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}\\2x+3y-z=36\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{21}=\frac{z}{28}\\\frac{y}{20}=\frac{z}{28}\\2x+3y-z=36\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{21}=\frac{y}{20}=\frac{z}{28}\\2x+3y-z=36\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{2x}{42}=\frac{3y}{60}=\frac{z}{28}\\2x+3y-z=36\end{cases}}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{42}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{42+60-28}=\frac{36}{74}=\frac{18}{37}\)

\(\Rightarrow\hept{\begin{cases}x=\frac{18}{37}\cdot21=\frac{378}{37}\\y=\frac{18}{37}\cdot20=\frac{360}{37}\\z=\frac{18}{37}\cdot28=\frac{504}{37}\end{cases}}\)