Sắp xếp các tỉ số lượng giác sau theo thứ tự từ nhỏ đến lớn (có giải thích).
a) sin32 độ 48``, cos28 độ 36``, sin51 độ, cos65 độ 17``
b) tg12 độ, cotg27 độ, cotg36 độ, tg82 độ
c) tg12 độ, cotg27 độ, cotg36 độ, cotg82 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\cot90^0=\tan0^0< \cot61^0=\tan29^0< \tan32^0< \tan50^0< \tan72^0=\cot18^0\)
@Nguyễn Thành Trương @Nguyễn Ngọc Lộc giúp cj Trần Ngọc Thảo giải bài baì vs ạ
tan 24 độ; cotg 62 độ; tan 32 độ; tan 44 độ; cotg 25 độ; cotg 18 độ
Ta có : \(\tan25=\cot65\)
\(\cot22< \cot50< \cot65< \cot73\)
\(\Rightarrow\cot22< \cot50< \tan25< \cot73\)
a, theo tỉ số lượng giác, ta có: \(\sin\alpha=\cos90-\alpha\)
=> cos28 = sin62 , cos88 = sin2 , cos20 = sin 70
mà sin của góc càng lớn giá trị càng lớn .=> sin2 , sin40 , sin62 , sin 65 , sin70
hay cos88 , sin 40 , cos28 , sin65 , cos 20
câu b làm tương tự nha bạn (1độ = 100')
à mà quên là \(\tan\alpha=\cot90-\alpha\)
và giá trị của tan cũng tăng theo giá trị góc như sin
a) sin 40, cos 28, sin 65, cos88, cos20
ta có: \(cos28^0=sin62^0\)
\(cos88^0=sin2^0\)
\(cos20^0=sin70^0\)
vì \(sin2^0< sin40^0< sin62^0< sin65^0< sin70^0\)
nên \(cos88^0< sin40^0< cos28^0< sin65^0< cos20^0\)
b) \(tan32^048',cot28^036',tan56^032',cot67^018'\)
ta co: \(cot28^036'=tan62^036'\approx tan63^0\)
\(cot67^018'=tan23^018'\approx tan23^0\)
\(tan32^048'\approx tan33^0\)
\(tan56^032'\approx tan57^0\)
vi \(tan23^0< tan33^0< tan57^0< tan63^0\)
nen \(cot67^018'< tan32^048'< tan56^032'< cot28^036'\)
- Độ dài các cạnh từ nhỏ đến lớn là c, b, a
- Các góc từ nhỏ đến lớn là C, B, A
- Ta thấy trong tam giác ABC cạnh đối diện với góc lớn hơn thì lớn hơn và ngược lại.
Sin 15 độ , Sin 30 độ , Cos 58 độ , Sin 48 độ , Cos 36 độ , Có 29 độ
Có phải giải thích ko bạn .
@Nguyễn Thành Trương @Nguyễn Ngọc Lộc giúp cj ý giải bài này với ạ. ( Cj ý nhờ e tag tên giùm; xl vì đã tag tên tự tiện ạ)
sin 24 độ , cos 70 độ (=sin 30 độ) ,sin 54 độ , cos 35 độ (=sin 55 độ ) , sin78 độ.
sin =90-cos ; cos =90-sin bạn nha!!
Chúc bạn học tốt!!
a: \(cos28^036'=sin61^024'\)
\(cos65^017'=sin24^043'\)
\(24^043'< 32^048'< 51^0< 61^024'\)
=>\(sin24^043'< sin32^048'< sin51^0< sin61^024'\)
=>\(cos65^017'< sin32^048'< sin51^0< cos28^036'\)
b: cot27=tan63
cot36=tan54
12<54<63<82
=>tan12<tan54<tan63<tan82
=>tan12<cot36<cot27<tan82
c: cot27=tan63
cot36=tan54
cot82=tan8
8<12<54<63
=>tan8<tan12<tan54<tan63
=>cot82<tan12<cot36<cot27