1/2x1+1/3x(1+2)+1/4x(1+2+3)+...+1/100x(1+2+3+...+99+100)
Giup minh voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555
=> 101x +5050 = 5555
=> 101x = 505
=> x = 505 : 101 = 5
Vậy, x = 5
b)1+2+3+4+...+x=820
=> ( x+1) x :2 = 820
=> (x+1)x = 1640
Mà 1640 = 40 . 41
=> x = 40 ( vì {x+1} - x = 1)
Vậy, x = 40
c) 3x+1 = 9.27=243
=> 3x+1 = 35
=>x + 1 = 5
=> x = 4
Vậy, x=4
d) x+2x+3x+...+99x+100x=15150
=> [( 100 + 1) x 100 :2 ] x = 15150
=> 5050x = 15150
=> x = 15150:5050 = 3
Vậy, x =3
e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550
=> 100x + 5050 = 205550
=> 100x = 205550 - 5050= 200500
=> x = 200500 : 100 = 2005
Vậy, x = 2005
f)3x+3x+1+3x+2=351
=> 3x + 3x . 3 + 3x x 9 = 351
=> 3x ( 1+3+9) = 351
=> 3x . 13 = 351
=> 3x = 351 :13=27 mà 27 = 33
=> x=3
Vậy, x=3
Đặt \(f\left(x\right)=x+x^2+x^3+x^4+...+x^{100}\)
\(\Rightarrow f'\left(x\right)=1+2x+3x^2+...+100x^{99}=P\) (1)
Mặt khác, ta có \(f\left(x\right)\) cũng là tổng của cấp số nhân với \(\left\{{}\begin{matrix}u_1=x\\q=x\\n=100\end{matrix}\right.\)
Do đó: \(f\left(x\right)=u_1.\dfrac{q^{100}-1}{q-1}=x.\dfrac{x^{100}-1}{x-1}=\dfrac{x^{101}-x}{x-1}\)
\(\Rightarrow f'\left(x\right)=\dfrac{\left(x^{101}-x\right)'.\left(x-1\right)-\left(x-1\right)'.\left(x^{101}-x\right)}{\left(x-1\right)^2}=\dfrac{100x^{101}-101x^{100}+1}{\left(x-1\right)^2}\) (2)
(1);(2) \(\Rightarrow P=\dfrac{100x^{101}-101x^{100}+1}{\left(x-1\right)^2}\)
(-2x).(-4x)+28=100 5x.(-x)^2+1=6 3x^2+12x=0 4x^3=4x
x.(-2-4)=100-28 5x.x^2=6-1 3x(x+4)=0 4x^3-4x=0
-6x=72 5.x^3=5 =>3x=0 hoặc x+4=0 4x(x^2-1)=0
x=-12 x^3=1 (bạn tự giải nốt nhé) =>4x=0 hoặc x^2-1=0
x=1 t.hợp1:x^2-1=0
x^2=1=> ko có gtrị nào của x thỏa mãn
(t.hợp còn lại bạn tự giải nhé)
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{a+1-a}=\sqrt{a+1}-\sqrt{a}\Rightarrow\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.......+\frac{1}{\sqrt{99}+\sqrt{100}}=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-......-\sqrt{99}+\sqrt{100}=10-1=9\)
c) x.(1+2+3+4+...+100)=0
x.5050=0
x=0:5050=0
Vậy x=0
d) x.(1+2+3+4+5+...+100)=5050
x.5050=5050
x=1
Vậy x=1
e) x+1+x+2+x+3+x+4+...+x+100=5050
(x+x+x+x+...+x)+(1+2+3+4+...+100)=5050
100 số hạng x
x.100+5050=5050
x.100=0
x=0
Vậy x=0
\(a,\)Biết \(B=\frac{100.101}{2}=50.101\)
\(A=1^3+2^3+3^3+...+99^3+100^3\)
Xét \(A=\left(1^3+100^3\right)+\left(2^3+99^3\right)+...+\left(49^3+52^3\right)+\left(50^3+51^3\right)\)
\(\Rightarrow A=101.\left(1+100+100^2\right)+101.\left(2^2+2.99+99^2\right)+...+101\left(50^2+50.51+51^2\right)\)
\(\Rightarrow A=101\left(1+100+100^2+2^2+2.99+99^2+...+50^2+50.51+51^2\right)⋮101\)
Xét\(A=\left(1^3+99^3\right)+\left(2^3+98^3\right)+...+\left(49^3+51^3\right)+50^3\)
\(\Rightarrow A=100\left(1^2+1.99+99^2\right)+100\left(2^2+2.98+98^2\right)+...+100\left(49^2+49.51+51^2\right)+100.50.25⋮50\)
Vậy \(A⋮101.50=5050=B\)
Làm tương tự với câu b