K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a)x+(x+1)+(x+2)+(x+3)+...+(x+99)+(x+100)=5555

=> 101x +5050 = 5555

=> 101x = 505

=> x = 505 : 101 = 5

Vậy, x = 5

b)1+2+3+4+...+x=820

=> ( x+1) x :2 = 820

=> (x+1)x = 1640

Mà 1640 = 40 . 41

=> x = 40 ( vì {x+1} - x = 1)

Vậy, x = 40

c) 3x+1 = 9.27=243

=> 3x+1 = 35

=>x + 1 = 5

=> x = 4

Vậy, x=4

d) x+2x+3x+...+99x+100x=15150

=> [( 100 + 1) x 100 :2 ] x = 15150

=> 5050x = 15150

=> x = 15150:5050 = 3

Vậy, x =3

e)(x+1)+(x+2)+(x+3)+...+(x+100)=205550

=> 100x + 5050 = 205550

=> 100x =  205550 - 5050= 200500

=> x =  200500 : 100 = 2005

Vậy, x = 2005

f)3x+3x+1+3x+2=351

=> 3x + 3x . 3 + 3x x 9 = 351

=> 3x ( 1+3+9) = 351

=> 3x  . 13 = 351

=> 3 = 351 :13=27 mà 27 = 33

=> x=3

Vậy, x=3

23 tháng 7 2023

mình đg cần gấp á

 

7 tháng 4 2022

khó nhề

 

NV
7 tháng 4 2022

Đặt \(f\left(x\right)=x+x^2+x^3+x^4+...+x^{100}\)

\(\Rightarrow f'\left(x\right)=1+2x+3x^2+...+100x^{99}=P\) (1)

Mặt khác, ta có \(f\left(x\right)\) cũng là tổng của cấp số nhân với \(\left\{{}\begin{matrix}u_1=x\\q=x\\n=100\end{matrix}\right.\)

Do đó: \(f\left(x\right)=u_1.\dfrac{q^{100}-1}{q-1}=x.\dfrac{x^{100}-1}{x-1}=\dfrac{x^{101}-x}{x-1}\)

\(\Rightarrow f'\left(x\right)=\dfrac{\left(x^{101}-x\right)'.\left(x-1\right)-\left(x-1\right)'.\left(x^{101}-x\right)}{\left(x-1\right)^2}=\dfrac{100x^{101}-101x^{100}+1}{\left(x-1\right)^2}\) (2)

(1);(2) \(\Rightarrow P=\dfrac{100x^{101}-101x^{100}+1}{\left(x-1\right)^2}\)

18 tháng 1 2016

(-2x).(-4x)+28=100                5x.(-x)^2+1=6                           3x^2+12x=0                                 4x^3=4x

x.(-2-4)=100-28                     5x.x^2=6-1                                3x(x+4)=0                                    4x^3-4x=0

-6x=72                                 5.x^3=5                                   =>3x=0 hoặc x+4=0                       4x(x^2-1)=0

x=-12                                   x^3=1                                      (bạn tự giải nốt nhé)                        =>4x=0 hoặc x^2-1=0

                                              x=1                                                                                             t.hợp1:x^2-1=0

                                                                                                                                                x^2=1=> ko có gtrị nào của x thỏa mãn

                                                                                                                                                  (t.hợp còn lại bạn tự giải nhé)

1 tháng 8 2019

\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{a+1-a}=\sqrt{a+1}-\sqrt{a}\Rightarrow\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.......+\frac{1}{\sqrt{99}+\sqrt{100}}=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-......-\sqrt{99}+\sqrt{100}=10-1=9\)

25 tháng 5 2016

a)<=> 3x-5-x=0

   <=>    2x-5=0

   <=>        x=5/2

21 tháng 6 2016

c) x.(1+2+3+4+...+100)=0

    x.5050=0

     x=0:5050=0

Vậy x=0

d) x.(1+2+3+4+5+...+100)=5050

    x.5050=5050

    x=1

Vậy x=1

e) x+1+x+2+x+3+x+4+...+x+100=5050

    (x+x+x+x+...+x)+(1+2+3+4+...+100)=5050

     100 số hạng x

    x.100+5050=5050

    x.100=0

    x=0

Vậy x=0

11 tháng 7 2018

\(a,\)Biết \(B=\frac{100.101}{2}=50.101\)

\(A=1^3+2^3+3^3+...+99^3+100^3\)

Xét \(A=\left(1^3+100^3\right)+\left(2^3+99^3\right)+...+\left(49^3+52^3\right)+\left(50^3+51^3\right)\)

\(\Rightarrow A=101.\left(1+100+100^2\right)+101.\left(2^2+2.99+99^2\right)+...+101\left(50^2+50.51+51^2\right)\)

\(\Rightarrow A=101\left(1+100+100^2+2^2+2.99+99^2+...+50^2+50.51+51^2\right)⋮101\)

Xét\(A=\left(1^3+99^3\right)+\left(2^3+98^3\right)+...+\left(49^3+51^3\right)+50^3\)

\(\Rightarrow A=100\left(1^2+1.99+99^2\right)+100\left(2^2+2.98+98^2\right)+...+100\left(49^2+49.51+51^2\right)+100.50.25⋮50\)

Vậy \(A⋮101.50=5050=B\)

Làm tương tự với câu b

5 tháng 12 2017

a) = -2 -2 -2 ... -2 -2 =50(-2)=-100