Tìm số hữu tỷ x sao cho x2+x+1991 là số chính phương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK : x ∈ Q
Đặt x2 + x + 6 = k2 ( k ∈ N )
=> 4( x2 + x + 6 ) = 4k2
=> 4x2 + 4x + 24 = 4k2
=> ( 4x2 + 4x + 1 ) + 23 = 4k2
=> ( 2x + 1 )2 + 23 = 4k2
=> 4k2 - ( 2x + 1 )2 - 23 = 0
=> ( 2k )2 - ( 2x + 1 )2 = 23
=> ( 2k - 2x - 1 )( 2k + 2x + 1 ) = 23
Xét các trường hợp :
1. \(\hept{\begin{cases}2k-2x-1=1\\2k+2x+1=23\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\k=6\end{cases}}\)( tm )
2. \(\hept{\begin{cases}2k-2x-1=-1\\2k+2x+1=-23\end{cases}}\Leftrightarrow x=k=-6\)( tm )
3. \(\hept{\begin{cases}2k-2x-1=23\\2k+2x+1=1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-6\\k=6\end{cases}}\)( tm )
4. \(\hept{\begin{cases}2k-2x-1=-23\\2k+2x+1=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=5\\k=-6\end{cases}}\)( tm )
=> x ∈ { 5 ; -6 } thì x2 + x + 6 là một số chính phương
Giả sử: \(\frac{x-17}{x-9}=\frac{a^2}{b^2}\left(a,b\in N,b\ne0\right)\)
Xét \(a=0\Rightarrow x=17\)
Xét \(a\ne0\)
Giả sử: \(\left(a,b\right)=1\)
\(\Rightarrow\hept{\begin{cases}x-17=a^2k\\x-9=b^2k\end{cases}\Rightarrow k\left(b-a\right)\left(a+b\right)=8}\)
Đến đây bạn làm tiếp nhé!
Đáp số: \(x=0;8;17;18\)
Chúc bạn học tốt !!!
Lời giải:
Để $\frac{6\sqrt{x}+2}{\sqrt{x}+2}=6-\frac{10}{\sqrt{x}+2}$ là scp thì nó phải có dạng $a^2$ (với $a\in\mathbb{N}$)
$\Leftrightarrow \frac{10}{\sqrt{x}+2}=6-a^2$
Hiển nhiên $\frac{10}{\sqrt{x}+2}>0$ nên $6-a^2>0$
$\Leftrightarrow a^2<6$. Vì $a\in\mathbb{N}$ nên $a=0,1,2$
$a=0\Leftrightarrow \frac{10}{\sqrt{x}+2}=6\Leftrightarrow \sqrt{x}=\frac{-1}{3}<0$ (loại)
$a=1\Leftrightarrow \frac{10}{\sqrt{x}+2}=5\Leftrightarrow \sqrt{x}+2=2\Leftrightarrow x=0$
$a=2\Leftrightarrow \frac{10}{\sqrt{x}+2}=2\Leftrightarrow \sqrt{x}+2=5\Leftrightarrow x=9$
đăt. x^2 + 2x +1 +1 = n^2 ( n dương) suy ra n^2 - (x + 1)^2 = 1 hay (n-x-1)(n+x+1) = 1.1
suy ra n - x -1 = 1 và n + x + 1 =1 suy ra n = 1; x = -1.liên hệ 0972315132
Đặt \(x^2+x+1991=a^2< =>4x^2+4x+7964=4a^2< =>\left(2x+1\right)^2+7963=\left(2a\right)^2.\)
\(< =>\left(2x+1\right)^2-\left(2a\right)^2=7963< =>\left(2x+1-2a\right)\left(2x+1+2a\right)=-7963\)
xong rồi tự tách nghiệm tìm tiếp nha! -7963 chỉ có 2 cặp nghiệm (-1,7963);(-7963:1) thôi
Để x + 2y và 2x - y là số hữu tỷ, ta có thể thiết lập hệ phương trình sau:
x + 2y = a/b (1)
2x - y = c/d (2)
Trong đó a, b, c, d là các số nguyên và b, d khác 0.
Từ phương trình (1), ta có x = a/b - 2y. Thay vào phương trình (2), ta có:
2(a/b - 2y) - y = c/d
2a/b - 4y - y = c/d
2a/b - 5y = c/d
Để 2a/b - 5y là số hữu tỷ, ta cần 5y cũng là số hữu tỷ. Vì vậy, y phải là số hữu tỷ.
Tiếp theo, để x = a/b - 2y là số hữu tỷ, ta cần a/b - 2y cũng là số hữu tỷ. Vì y là số hữu tỷ, nên a/b - 2y cũng là số hữu tỷ.
Vậy, nếu x + 2y và 2x - y là số hữu tỷ, thì x và y đều là số hữu tỉ.
để x2+x+1991 là số chính phương
=>x2+x là stn
=>x là số nguyên
đặt x2+x+1991=a2
=>4x2+4x+1991.4=4a2
=>(2x+1)2+7963=4a2
=>(2a-2x-1)(2a+2x+1)=7963
từ đó tìm x là được
x hữu tỷ mà