Tập nghiệm của phương trình2x+2=∣3x−2∣ là S.
S={?}
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`2x+3=|3x-2|(x>=-2/3)`
`<=>` $\left[ \begin{array}{l}2x+3=3x-2\\2x+3=2-3x\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=5(tm)\\5x=-1\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=5\\x=-\dfrac15(tm)\end{array} \right.$
Vậy `S={5,-1/5}`
`2x+2=|3x-2|(x>=-1)`
`<=>`$\left[ \begin{array}{l}2x+2=3x-2\\2x+2=2-3x\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=4\\5x=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=4(tm)\\x=0(tm)\end{array} \right.$
Vậy `S={4,0}`
`2x+8=|3x-2|(x>=-4)`
`<=>` $\left[ \begin{array}{l}2x+8=3x-2\\2x+8=2-3x\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=10(tm)\\5x=-4\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=10\\x=-0,8(tm)\end{array} \right.$
Vậy `S={10,-0,8}`
2x+8=|3x−2|(x≥−4)2x+8=|3x-2|(x≥-4)
⇔⇔ [2x+8=3x−22x+8=2−3x[2x+8=3x−22x+8=2−3x
⇔⇔ [x=10(tm)5x=−4[x=10(tm)5x=−4
⇔⇔ [x=10x=−0,8(tm)[x=10x=−0,8(tm)
Vậy S={10,−0,8}S={10,-0,8}
`2x+10=|3x-2|(x>=-5)`
`<=>`$\left[ \begin{array}{l}2x+10=3x-2\\2x+10=2-3x\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=12\\5x=-8\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=12(tm)\\x=-\dfrac85(tm)\end{array} \right.$
Vậy `S={1,-8/5}`
`2x+10=|3x-2|(x>=-5)`
`<=>`$\left[ \begin{array}{l}2x+10=3x-2\\2x+10=2-3x\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=12\\5x=-8\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=12(tm)\\x=-\dfrac85(tm)\end{array} \right.$
Vậy `S={12,-8/5}`
`2x+5=|3x-2|(x>=-5/2)`
`<=>`$\left[ \begin{array}{l}2x+5=3x-2\\2x+5=2-3x\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=7\\5x=-3\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=7(tm)\\x=-\dfrac35(tm)\end{array} \right.$
Vậy `S={7,-3/5}`
`2x-1=|3x-2|(x>=1/2)`
`<=>`$\left[ \begin{array}{l}2x-1=3x-2\\2x-1=2-3x\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=1\\5x=3\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=1(tm)\\x=\dfrac35(tm)\end{array} \right.$
Vậy `S={1,3/5}`
`2x+9=|3x-2|(x>=-9/2)`
`<=>`$\left[ \begin{array}{l}2x+9=3x-2\\2x+9=2-3x\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=11\\5x=-7\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=11(tm)\\x=-\dfrac75(tm)\end{array} \right.$
Vậy `S={1,-7/5}`
`|2x+1|=|-6x|`
`<=>` $\left[ \begin{array}{l}2x+1=-6x\\2x+1=6x\end{array} \right.$
`<=>` $\left[ \begin{array}{l}8x=-1\\4x=1\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=\dfrac{-1}{8}\\x=\dfrac14\end{array} \right.$
Vậy `S={1/4,-1/8}`
`|2x+2|=|3x-2|`
`<=>` $\left[ \begin{array}{l}2x+2=3x-1\\2x+2=2-3x\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=3\\5x=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=3\\x=0\end{array} \right.$
Vậy `S={0,3}`
Sai rồi