Gieo xúc xắc 30 lần liên tiếp, có 4 lần xuất hiện mặt 2 chấm. Tính xác suất thực nghiệm của biến cố “Mặt xuất hiện của xúc xắc là mặt 2 chấm”.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Nếu gieo một xúc xắc 11 lần liên tiếp, có 5 lần xuất hiện mặt 2 chấm thì xác suất thực nghiệm xuất hiện mặt 2 chấm bằng: \(\dfrac{5}{11}\)
b) Nếu gieo một xúc xắc 14 lần liên tiếp, có 3 lần xuất hiện mặt 6 chấm thì xác suất thực nghiệm xuất hiện mặt 6 chấm bằng: \(\dfrac{3}{14}\)
Tập hợp gồm các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc là:
A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}.
Số phần tử của tập hợp A là 6.
a) Có bốn kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là ước của 6” là: mặt 1 chấm, mặt 2 chấm, mặt 3 chấm, mặt 6 chấm.
Vì thế, xác suất của biến cố trên là \(\dfrac{4}{6} = \dfrac{2}{3}\).
b) Có hai kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia 3 dư 2” là: mặt 2 chấm, mặt 5 chấm.
Vì thế, xác suất của biến cố trên là \(\dfrac{2}{6} = \dfrac{1}{3}\).
Tập hợp gồm các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc là:
A = {mặt 1 chấm; mặt 2 chấm; mặt 3 chấm; mặt 4 chấm; mặt 5 chấm; mặt 6 chấm}.
Số phần tử của tập hợp A là 6.
a) Có ba kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số nguyên tố” là: mặt 2 chấm, mặt 3 chấm, mặt 5 chấm.
Vì thế, xác suất của biến cố trên là \(\dfrac{3}{6} = \dfrac{1}{2}\).
b) Có hai kết quả thuận lợi cho biến cố “Mặt xuất hiện của xúc xắc có số chấm là số chia 4 dư 1” là: mặt 1 chấm, mặt 5 chấm.
Vì thế, xác suất của biến cố trên là \(\dfrac{2}{6} = \dfrac{1}{3}\).
a: \(\Omega=\left\{1;2;3;4;5;6\right\}\)
=>n(omega)=6
A={1;4}
=>n(A)=2
=>P(A)=2/6=1/3
b: B={3;4;5;6}
=>n(B)=4
=>P(B)=4/6=2/3
Xác suất thực nghiệm của biến cố “Mặt xuất hiện của xúc xắc là mặt 2 chấm” là `4/30=2/15`