K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

DC,DA là tiếp tuyến

=>DC=DA và OD là phân giác của góc AOC(1)

Xét (O) có

EC,EB là tiếp tuyến

=>EC=EB và OE là phân giác của góc BOC(2)

Từ (1), (2) suy ra:

góc DOE=1/2(góc COA+góc COB)

=1/2*180=90 độ

b: DC+CE=DE

DC=DA

EB=EC

Do đó: DA+EB=DE

c: Xét ΔDOE vuông tại O có OC là đường cao

nên CD*CE=CO^2

=>CD*CE=R^2 không đổi

d: Sửa đề; Đường kính DE

Gọi K là trung điểm của DE

ΔDOE vuông tại O

=>O nằm trên đường tròn đường kính DE

=>O nằm trên (K)

Xét hình thang ADEB có

K,O lần lượt là trung điểm của DE,AB

=>KO là đường trung bình

=>KO//AD//EB

=>KO vuông góc AB

Xét (K) có

KO là bán kính

AB vuông góc KO tại O

Do đó: AB là tiếp tuyến của (K)

18 tháng 2 2022

giúp em với a cần gấp 

 

a: Xét (O) có 

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: OC là tia phân giác của góc MOA(1)

Xét (O) có

DM là tiếp tuyến

DB là tiếp tuyến

DO đó; OD là tia phân giác của góc MOB(2)

Từ (1) và (2) suy ra \(\widehat{DOC}=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

hay ΔODC vuông tại O

b: Xét ΔODC vuông tại O có OM là đường cao

nên \(MC\cdot MD=OM^2\)

26 tháng 7 2017

Đề kiểm tra Toán 9 | Đề thi Toán 9

a) CE và EB là 2 tiếp tuyến cắt nhau tại E

⇒ EC = EB và CB ⊥ OE

Tương tự, DC và DA là 2 tiếp tuyến cắt nhau tại D

⇒ DC = DA và AC ⊥ OD

Khi đó: AD + BE = DC + EC = DE

b: Xét (O) có

CE,CA là các tiếp tuyến

nen CE=CA và OC là phân giác của góc AOE(1)

Xét (O) có

DE,DB là các tiếp tuyến

nên DE=DB và OD là phân giác của góc BOE(2)

Từ (1), (2) suy ra góc COD=1/2*180=90 độ

c: CA=CE

OA=OE

Do đó: OC là trung trực của AE

=>OC vuông góc với AE

DE=DB

OE=OB

Do đo; OD là trung trực của EB

=>OD vuông góc với EB

Xét tứ giác EIOK có

góc EIO=góc EKO=góc IOK=90 độ

nên EIOK là hình chữ nhật

d: OK*OD=OB^2

OI*OC=OA^2

mà OB=OA

nên OK*OD=OI*OC

2 tháng 1 2023

Thanskiu

a: Xét (O) có

CA,CM là tiếp tuyến

nênCA=CM và OC là phân giác của góc AOM(1)

mà OA=OM

nên OC là trung trực của AM

=>OC vuông góc với AM

Xét (O) có

DM,DB là tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

Xét (O)có

ΔAMB nội tiếp

AB là đường kính

Do đó: ΔAMB vuông tại M

=>MB vuông góc MA

=>MB//OC

b: Từ (1), (2) suy ra góc COD=1/2*180=90 độ

=>OC vuông góc với OD

mà OM vuông góc DC

nên MC*MD=OM^2

=>AC*BD=R^2

c: Gọi H là trung điểm của CD

Xét hình thang ABDC có

H,O lần lượtlà trung điểm của CD,AB

nên HO là đường trung bình

=>HO//AC//BD

=>HO vuông góc với AB

=>AB là tiếp tuyến của (H)

17 tháng 11 2023

a: Xét (O) có

CM,CA là tiếp tuyến

Do đó: CM=CA và OC là phân giác của \(\widehat{AOM}\)

=>\(\widehat{COM}=\dfrac{1}{2}\cdot\widehat{MOA}\)

Xét (O) có

DM,DB là tiếp tuyến

Do đó: DM=DB và OD là phân giác của \(\widehat{MOB}\)

=>\(\widehat{MOD}=\dfrac{1}{2}\cdot\widehat{MOB}\)

\(\widehat{COD}=\widehat{COM}+\widehat{DOM}\)

\(=\dfrac{1}{2}\cdot\widehat{MOA}+\dfrac{1}{2}\cdot\widehat{MOB}\)

\(=\dfrac{1}{2}\left(\widehat{MOA}+\widehat{MOB}\right)=\dfrac{1}{2}\cdot180^0=90^0\)

CD=CM+MD

mà CM=CA và DM=DB

nên CD=CA+DB

b: Xét ΔOCD vuông tại O có OM là đường cao

nên \(OM^2=CM\cdot MD\)

=>\(AC\cdot BD=R^2\) 

c: CM=CA

OM=OA

Do đó: CO là đường trung trực của AM

=>CO\(\perp\)AM tại E

DM=DB

OM=OB

Do đó: OD là đường trung trực của MB

=>OD\(\perp\)MB tại F

Xét tứ giác MEOF có

\(\widehat{MEO}=\widehat{MFO}=\widehat{FOE}=90^0\)

=>MEOF là hình chữ nhật

=>EF=OM=R

a: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

Xét ΔADB vuông tại A có AC là đường cao

nên \(AD^2=DB\cdot DC\)

b: Xét (O) có

EC là tiếp tuyến

EA là tiếp tuyến

Do đó: EC=EA
=>ΔECA cân tại C

=>góc ECA=góc EAC

\(\Leftrightarrow90^0-\widehat{ECA}=90^0-\widehat{EAC}\)

hay \(\widehat{EDC}=\widehat{ECD}\)

=>ΔECD cân tại E

=>ED=EC
mà EC=EA
nên EA=ED

hay E là trung điểm của AD

27 tháng 1 2022

có hình không bạn

11 tháng 12 2021

a: Xét (O) có 

CE là tiếp tuyến

CA là tiếp tuyến

Do đó: CE=CA

Xét (O) có 

DE là tiếp tuyến

DB là tiếp tuyến

Do đó: DE=DB

Ta có: CE+DE=CD

nên CD=CA+DB