K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta sẽ chứng minh BĐT sau: a^2+b^2+c^2>=ab+ac+bc với mọi a,b,c

\(a^2+b^2+c^2>=ab+bc+ac\)

=>\(2a^2+2b^2+2c^2>=2ab+2bc+2ac\)

=>\(a^2-2ab+b^2+b^2-2bc+c^2+a^2-2ac+c^2>=0\)

=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2>=0\)(luôn đúng)

a: ab+ac+bc>=3

mà a^2+b^2+c^2>=ab+ac+bc(CMT)

nên a^2+b^2+c^2>=3

Dấu = xảy ra khi a=b=c=1

Khi a=b=c=1 thì A=1+1+1+10=13

b: a^2+b^2+c^2<=8

Dấu = xảy ra khi \(a^2=b^2=c^2=\dfrac{8}{3}\)

=>\(a=b=c=\dfrac{2\sqrt{2}}{\sqrt{3}}=\dfrac{2\sqrt{6}}{3}\)

Khi \(a=b=c=\dfrac{2\sqrt{6}}{3}\) thì \(B=\dfrac{2\sqrt{6}}{3}\cdot3-5=2\sqrt{6}-5\)

NV
13 tháng 8 2021

\(a^2+ab+b^2=\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(a^2+b^2\right)\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)

Tương tự, ta có:

\(M\ge\dfrac{\sqrt{3}}{2}\left(a+b\right)+\dfrac{\sqrt{3}}{2}\left(b+c\right)+\dfrac{\sqrt{3}}{2}\left(c+a\right)=\sqrt{3}\left(a+b+c\right)=3\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Ta có : a^2+b^2 +c^2 >= ab+bc+ac ==> a^2+b^2+c^2+2ab+2bc+2ac>=3(ab+bc+ac) => (ab+bc+ac)<= ((a+b+c)^2)/3 Dấu đẳng thức xảy ra khi và chỉ khi a=b=c Áp dụng : được Max B = 3 khi a=b=c=1
HT

6 tháng 10 2021

a = b = c 1ht

TTLTL*

HHT

9 tháng 12 2018

2) \(S=a+\frac{1}{a}=\frac{15a}{16}+\left(\frac{a}{16}+\frac{1}{a}\right)\)

Áp dụng BĐT AM-GM ta có:

\(S\ge\frac{15a}{16}+2.\sqrt{\frac{a}{16}.\frac{1}{a}}=\frac{15.4}{16}+2.\sqrt{\frac{1}{16}}=\frac{15}{4}+2.\frac{1}{4}=\frac{15}{4}+\frac{1}{2}=\frac{15}{4}+\frac{2}{4}=\frac{17}{4}\)

\(S=\frac{17}{4}\Leftrightarrow a=4\)

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

9 tháng 12 2018

kudo shinichi sao cách làm giống của thầy Hồng Trí Quang vậy bạn?

\(S=a+\frac{1}{a}=\frac{15}{16}a+\left(\frac{a}{16}+\frac{1}{a}\right)\ge\frac{15}{16}a+2\sqrt{\frac{1.a}{16.a}}=\frac{15}{16}a+2.\frac{1}{4}\)

\(=\frac{15}{16}.4+\frac{1}{2}=\frac{17}{4}\Leftrightarrow a=4\)

Dấu "=" xảy ra khi a = 4

Vậy \(S_{min}=\frac{17}{4}\Leftrightarrow a=4\)

7 tháng 1 2020

4/ Xét hiệu: \(P-2\left(ab+7bc+ca\right)\)

\(=5a^2+11b^2+5c^2-2\left(ab+7bc+ca\right)\)

\(=\frac{\left(5a-b-c\right)^2+6\left(3b-2c\right)^2}{5}\ge0\)

Vì vậy: \(P\ge2\left(ab+7bc+ca\right)=2.188=376\)

Đẳng thức xảy ra khi ...(anh giải nốt ạ)

7 tháng 1 2020

@Cool Kid:

Bài 5: Bản chất của bài này là tìm k (nhỏ nhất hay lớn nhất gì đó, mình nhớ không rõ nhưng đại khái là chọn k) sao cho: \(5a^2+11b^2+5c^2\ge k\left(ab+7bc+ca\right)\)

Rồi đó, chuyển vế, viết lại dưới dạng tam thức bậc 2 biến a, b, c gì cũng được rồi tự làm đi:)