K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2023

Để máy tính Casio hiển thị kết quả là 3π/3 thay vì 9,4247779619,424777961, bạn cần thay đổi cài đặt chế độ hiển thị của máy tính. Đây là cách để làm điều đó:

Bật máy tính Casio và chọn chế độ "MODE" (chế độ).Tìm và chọn chế độ "ANGLE" (góc).Trong chế độ "ANGLE", chọn "RADIAN" (rad).Sau khi chọn chế độ "RADIAN", máy tính sẽ hiển thị kết quả theo đơn vị radian thay vì đơn vị đo góc thông thường như độ (degree).Bây giờ, khi tính toán lại phép tính 6πcos(π/2×2015+π/6), máy tính sẽ hiển thị kết quả là 3π/3.

Lưu ý rằng việc thay đổi chế độ hiển thị này có thể ảnh hưởng đến các tính toán khác trên máy tính của bạn. Vì vậy, hãy chắc chắn rằng bạn đã thay đổi chế độ hiển thị trở lại sau khi hoàn thành phép tính của mình.

8 tháng 9 2023

Tui lớp 6 💀

Bài toán : Cho góc a thỏa mãn tan(a) = \(\dfrac{-4}{3}\) và a thuộc khoảng \(\left(\dfrac{3}{2}\pi;2\pi\right)\) .Tính P = \(tan\left(\dfrac{\alpha}{2}\right)+cos\left(\dfrac{\alpha}{2}\right)\)Mình muốn giải cái này bằng cách sử dụng máy tính :3 .Mình đã làm và ra đáp án nhưng nó bị sai dấu ấy ạ ! Mong các cao nhân có thể tìm ra lỗi sai cho mình :(( huhuĐây là cách làm của mình :1. Mình tìm góc a bằng cách bấm : shift tan(\(\dfrac{-4}{3}\)) tính được...
Đọc tiếp

Bài toán : 

Cho góc a thỏa mãn tan(a) = \(\dfrac{-4}{3}\) và a thuộc khoảng \(\left(\dfrac{3}{2}\pi;2\pi\right)\) .

Tính P = \(tan\left(\dfrac{\alpha}{2}\right)+cos\left(\dfrac{\alpha}{2}\right)\)

Mình muốn giải cái này bằng cách sử dụng máy tính :3 .

Mình đã làm và ra đáp án nhưng nó bị sai dấu ấy ạ ! Mong các cao nhân có thể tìm ra lỗi sai cho mình :(( huhu

Đây là cách làm của mình :

1. Mình tìm góc a bằng cách bấm : shift tan(\(\dfrac{-4}{3}\)) tính được a

2. Ở góc phần tư thứ IV , nhận thấy tan âm , sin âm , cos dương . Mình xét tính sin(a/2) và cos(a/2) đều thỏa mãn về dấu và mình chỉ việc tính toán mà không cần loại điều kiện nữa ) 

\(sin\left(\dfrac{ans}{2}\right)+cos\left(\dfrac{ans}{2}\right)=\dfrac{\sqrt{5}}{5}\)

Khi check đáp án thì nó lại là âm ạ ! Mọi người cho em ít kinh nghiệm ạ ! 

Cảm ơn mọi người và chúc mọi người năm mới vui vẻ !

7
2 tháng 2 2022

Chúc anh nhiều sức khỏe

TL
2 tháng 2 2022

oki nè

\(\dfrac{\Omega}{2}< a< \Omega\)

=>\(cosa< 0\)

\(sin\alpha=\dfrac{1}{3}\)

\(\Leftrightarrow cos^2\alpha=1-sin^2\alpha=1-\left(\dfrac{1}{3}\right)^2=\dfrac{8}{9}\)

mà cosa<0

nên \(cos\alpha=-\dfrac{2\sqrt{2}}{3}\)

\(cos\left(\alpha-\dfrac{\Omega}{6}\right)=cos\alpha\cdot cos\left(\dfrac{\Omega}{6}\right)+sin\alpha\cdot sin\left(\dfrac{\Omega}{6}\right)\)

\(=-\dfrac{2\sqrt{2}}{3}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{1}{3}\cdot\dfrac{1}{2}\)

\(=\dfrac{-2\sqrt{6}+1}{6}\)

270 độ<x<360 độ

=>sinx<0 và cosx>0

\(cos2x=\dfrac{2}{3}\)

=>\(2\cdot cos^2x-1=\dfrac{2}{3}\)

=>\(2\cdot cos^2x=\dfrac{5}{3}\)

=>\(cos^2x=\dfrac{5}{6}\)

mà cosx>0

nên \(cosx=\dfrac{\sqrt{30}}{6}\)

=>\(sinx=-\dfrac{\sqrt{6}}{6}\)

\(sin\left(x-\dfrac{pi}{6}\right)=sinx\cdot cos\left(\dfrac{pi}{6}\right)-cosx\cdot sin\left(\dfrac{pi}{6}\right)\)

\(=-\dfrac{\sqrt{6}}{6}\cdot\dfrac{\sqrt{3}}{2}-\dfrac{\sqrt{30}}{6}\cdot\dfrac{1}{2}=\dfrac{-3\sqrt{2}-\sqrt{30}}{12}\)

\(cos\left(x-\dfrac{pi}{6}\right)=cosx\cdot cos\left(\dfrac{pi}{6}\right)+sinx\cdot sin\left(\dfrac{pi}{6}\right)\)

\(=\dfrac{\sqrt{30}}{6}\cdot\dfrac{\sqrt{3}}{2}+\dfrac{-\sqrt{6}}{6}\cdot\dfrac{1}{2}=\dfrac{\sqrt{90}-\sqrt{6}}{12}\)

\(=cos\left(\dfrac{4}{3}pi\right)+sin\left(\dfrac{pi}{6}\right)+tan\left(-\dfrac{3}{4}pi\right)\)

\(=-\dfrac{1}{2}+\dfrac{1}{2}+1=1\)

6 tháng 5 2021

Ta có \(F=sin^2\dfrac{\pi}{6}+...+sin^2\pi=\left(sin^2\dfrac{\pi}{6}+sin^2\dfrac{5\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+sin^2\dfrac{4\pi}{6}\right)+\left(sin^2\dfrac{3\pi}{6}+sin^2\pi\right)=\left(sin^2\dfrac{\pi}{6}+cos^2\dfrac{\pi}{6}\right)+\left(sin^2\dfrac{2\pi}{6}+cos^2\dfrac{2\pi}{6}\right)+\left(1+0\right)=1+1+1=3\)

11 tháng 10 2023

loading...  loading...