K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1. Cho hình thoi ABCD . Trên hai cạnh BC , CD lần lượt lấy hai điểm M và N sao choBM DN  . Gọi P Q ; thứ tự là giao điểm của AM và AN với đường chéo BD . Chứng minh rằng:1.1. BAM DAN   1.2.Tứ giác APDQ là hình thoi.Bài 2. Cho hình bình hành ABCD có AB AC  . Gọi I là trung điểm của BC , trên tia AI lấy điểmE sao cho I là trung điểm của AE .2.1. Chứng minh ABEC là hình thoi.2.2. Chứng minh D C E ; ; thẳng hàng.2.3. Tính...
Đọc tiếp

Bài 1. Cho hình thoi ABCD . Trên hai cạnh BC , CD lần lượt lấy hai điểm M N sao cho

BM DN . Gọi P Q ; thứ tự là giao điểm của AM AN với đường chéo BD . Chứng minh rằng:
1.1. BAM DAN 1.2.Tứ giác APDQ là hình thoi.


Bài 2. Cho hình bình hành ABCD AB AC . Gọi I là trung điểm của BC , trên tia AI lấy điểm
E sao cho I là trung điểm của AE .
2.1. Chứng minh ABEC là hình thoi.
2.2. Chứng minh
D C E ; ; thẳng hàng.
2.3. Tính số đo
DAE
Bài 3. Cho hình bình hành ABCD AB bằng đường chéo AC . Gọi O là trung điểm của BC trên tia
AO lấy điểm E sao cho O là trung điểm của AE . Đường thẳng vuông góc với AE tại E cắt AC tại
F.
3.1. Chứng minh
ABEC là hình thoi
3.2. Chứng minh tứ giác
ADFE là hình chữ nhật
3.3. Vẽ
AI CD tại I . Chứng minh rằng nếu AI AO thì AC BD ABO   60
Bài 4. Cho hình bình hành ABCD .Trên các cạnh AB CD lần lượt lấy các điểm M N sao cho
AM DN . Đường trung trực của BM lần lượt cắt các đường thẳng MN BC tại E F.
4.1. Chứng minh
AB là đường trung trực của EF .
4.2. Chứng minh tứ giác
MEBF là hình thoi.
4.3. Hình bình hành
ABCD có thêm điều kiện gì để tứ giác BCNE là hình thang cân.
Bài 5. Cho tam giác ABC cân tại A. Đường trung tuyến AM , trên tia AM lấy điểm D sao cho M
trung điểm của
AD .Gọi K là trung điểm của MC ,trên tia DK lấy điểm E sao cho K là trung điểm của
ED .
5.1. Chứng minh tứ giác
ABDC là hình thoi .
5.2. Chứng minh tứ giác
AMCE là hình chữ nhật.
5.3. Gọi
I là giao điểm của AM BE . Chứng minh I là trung điểm của BE .
5.4. Chứng minh rằng:
AK ; CI ; EM đồng quy.

1

5:

5.1: Xét tứ giác ABDC có

M là trung điểm chung của AD và BC

AB=AC

Do đó: ABDC là hình thoi

5.2: Xét tứ giác DMEC có

K là trung điểm chung của DE và MC

=>DMEC là hình bình hành

=>DM//ECvà DM=EC

mà AM=MD và A,M,D thẳng hàng

nên MA//EC và MA=EC

ΔABC cân tại A có AM là trung tuyến

nên AM vuông góc BC

Xét tứ giác AMCE có

AM//CE

AM=CE

góc AMC=90 độ

Do đó: AMCE là hình chữ nhật

5.3:

AMCE là hình chữ nhật

=>AE//CM và AE=CM

mà B,M,C thẳng và MB=MC

nên MB//AE và MB=AE
=>AEMB là hình bình hành

=>AM cắt EB tại trung điểm của mỗi đường

=>I là trung điểm của BE

 

16 tháng 7 2019

A B C D M N I H

Gọi khoảng cách từ A đến BM,DN lần lượt là h và k. Kẻ MH vuông góc AB.

Ta có \(S_{AMB}=\frac{MH.AB}{2}=\frac{S_{ABCD}}{2}\). Tương tự \(S_{AND}=\frac{S_{ABCD}}{2}\)

Do đó \(2S_{AMB}=2S_{AND}\) hay \(h.BM=k.DN\). Mà BM = DN nên \(h=k\)

Suy ra khoảng cách từ A đến 2 đường thẳng BM,DN là bằng nhau; BM cắt DN tại I

Vậy thì A nằm trên phân giác của ^DIB hay IA là phân giác góc DIB (đpcm).

6 tháng 5 2018

haha m hok giỏi môn gì nhất

tl hộ mk vs 

mk cho

10 tháng 3 2022

-OM cắt DC tại N'.

\(\dfrac{AM}{DN}=\dfrac{MB}{NC}=\dfrac{AM+MB}{DN+BC}=\dfrac{AB}{DC}\)

-Xét △ODN' có: AM//DN'.

\(\Rightarrow\dfrac{AM}{DN'}=\dfrac{OM}{MN'}\) (hệ quả định lí Ta-let) (1)

-Xét △OCN' có: BM//CN'.

\(\Rightarrow\dfrac{BM}{CN'}=\dfrac{OM}{MN'}\) (định lí Ta-let) (2)

-Từ (1) và (2) suy ra: 

\(\dfrac{AM}{DN'}=\dfrac{BM}{CN'}=\dfrac{AM+BM}{CN'+DN'}=\dfrac{AB}{CD}\)

\(\Rightarrow\dfrac{AM}{CN'}=\dfrac{BM}{DN'}=\dfrac{AM}{CN}=\dfrac{BM}{DN}\)

\(\Rightarrow CN=CN';DN=DN'\)

\(\Rightarrow N\equiv N'\)

-Vậy MN đi qua điểm O.

31 tháng 8 2017

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

NV
19 tháng 8 2021

Chi tiết \(BM=DN=\dfrac{a}{3}\) hoàn toàn không cần thiết

a.

Ta có: \(AC\perp BD\) tại O (2 đường chéo hình vuông) \(\Rightarrow O\) thuộc đường tròn đường kính AB

\(AH\perp BH\) (gt) \(\Rightarrow\) H thuộc đường tròn đường kính AB

\(\Rightarrow\) 4 điểm A,B,O,H cùng thuộc đường tròn đường kính AB hay tứ giác ABHO nội tiếp

Hoàn toàn tương tự, 4 điểm ADKO cùng thuộc đường tròn đường kính AD nên tứ giác ADKO nội tiếp

b.

Trong tam giác vuông ABM vuông tại B với đường cao BH, áp dụng hệ thức lượng:

\(AB^2=AH.AM\)

Tương tự, trong tam giác vuông ADN:

\(AD^2=AK.AN\)

Mà \(AB=AD=a\Rightarrow AH.AM=AK.AN\Rightarrow\dfrac{AH}{AN}=\dfrac{AK}{AM}\) (đpcm)

NV
19 tháng 8 2021

undefined