Bài 1 Tính
a,2545 x545/12544
b, 221 x 917/334 x 86
c, ( 347 x 8111) : ( 2720 x 915 )
d,0 x x258 x 48 - 571 : 569
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
915 < X x 4 < 917
=> 915 < 916 < 917
=> X = 916 : 4
=> X = 229
Tick cho mik nha !!!
1784:x=4
x=1784:4
x=446
X;8=1039
x=1039x8
x=8312
x+347=145x6
x+137=870
x=870-137
x=733
917-x=984:2
917-x=492
x=917-492
x=425
a) 48 x 9 + 24 x 18 + 18 x 52
= 24 x 2 x 9 + 24 x 18 + 18 x 52
= 24 x 18 + 24 x 18 + 18 x 52
= 18 x (24+24+52)
=18 x 100
=1800
a﴿ 48 x 9 + 24 x 18 + 18 x 52
= 24 x 2 x 9 + 24 x 18 + 18 x 52
= 24 x 18 + 24 x 18 + 18 x 52
= 18 x ﴾24+24+52﴿
=18 x 100
=1800
Bài 1:
a: \(\sqrt{27}+\dfrac{1}{2}\sqrt{48}-\sqrt{108}\)
\(=3\sqrt{3}+\dfrac{1}{2}\cdot4\sqrt{3}-6\sqrt{3}\)
\(=-3\sqrt{3}+2\sqrt{3}=-\sqrt{3}\)
b: \(\left(\sqrt{14}-\sqrt{10}\right)\cdot\sqrt{6+\sqrt{35}}\)
\(=\left(\sqrt{7}-\sqrt{5}\right)\cdot\sqrt{2}\cdot\sqrt{6+\sqrt{35}}\)
\(=\left(\sqrt{7}-\sqrt{5}\right)\cdot\sqrt{12+2\sqrt{35}}\)
\(=\left(\sqrt{7}-\sqrt{5}\right)\cdot\sqrt{\left(\sqrt{7}+\sqrt{5}\right)^2}\)
\(=\left(\sqrt{7}-\sqrt{5}\right)\left(\sqrt{7}+\sqrt{5}\right)=7-5=2\)
c: \(\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}-\dfrac{2}{\sqrt{3}-1}\)
\(=\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}-\dfrac{2\left(\sqrt{3}+1\right)}{3-1}\)
\(=\sqrt{3}-\sqrt{3}-1=-1\)
Bài 2:
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >1\end{matrix}\right.\)
\(A=\dfrac{x-5}{x+2\sqrt{x}-3}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-5}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}+\dfrac{1}{\sqrt{x}+3}+\dfrac{2}{\sqrt{x}-1}\)
\(=\dfrac{x-5+\sqrt{x}-1+2\sqrt{x}+6}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
b: A=2
=>\(\sqrt{x}=2\left(\sqrt{x}-1\right)\)
=>\(2\sqrt{x}-2=\sqrt{x}\)
=>\(\sqrt{x}=2\)
=>x=4(nhận)
c: Để A là số nguyên thì \(\sqrt{x}⋮\sqrt{x}-1\)
=>\(\sqrt{x}-1+1⋮\sqrt{x}-1\)
=>\(\sqrt{x}-1\inƯ\left(1\right)\)
=>\(\sqrt{x}-1\in\left\{1;-1\right\}\)
=>\(\sqrt{x}\in\left\{2;0\right\}\)
=>\(x\in\left\{4;0\right\}\)
a) \(6x^2-15x\)
b) \(x^2+5x+4\)
c) \(49-x^2\)
d) \(x^2+4x+4\)
e) \(9-12x+4x^2\)
f) \(x^3-8\)
\(a,=6x^2-15x\\ b,=x^2+5x+4\\ c,=49-x^2\\ d,=x^2+4x+4\\ e,=9-12x+4x^2\\ f,=x^3-8\)
a) \(\dfrac{12}{1+\sqrt{5}}+\dfrac{15}{\sqrt{5}}-\dfrac{\sqrt{20}-5}{2-\sqrt{5}}\)
=\(\dfrac{12\left(1-\sqrt{5}\right)}{-4}+\dfrac{15\sqrt{5}}{5}-\dfrac{\left(\sqrt{20}-5\right)\left(2+\sqrt{5}\right)}{-1}\)
=\(-3+3\sqrt{5}-\sqrt{5}+3\sqrt{5}+4\sqrt{5}+10-10-5\sqrt{5}\)
=\(5\sqrt{5}-3\)
b)\(\dfrac{2\sqrt{x}}{\sqrt{x}-1}-\dfrac{3x}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}}\)
=\(\dfrac{2x-3x+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
=\(\dfrac{-x+\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
a: =5x^3-5x^2y+5x-2x^2y+2xy^2-2y
=5x^3-7x^2y+2xy^2+5x-2y
b: =(x^2-1)(x+2)
=x^3+2x^2-x-2
c: =1/2x^2y^2(4x^2-y^2)
=2x^4y^2-1/2x^2y^4
d: =(x^2-1/4)(4x-1)
=4x^3-x^2-x+1/4
e: =x^2-2x-35+(2x+1)(x-3)
=x^2-2x-35+2x^2-6x+x-3
=3x^2-7x-38