tính giá trị của đa thức P=x3y-14y3-6xy2+y+2 tại x=-1;y=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
N = 8x3 – 12x2y + 6xy2 – y3
= (2x)3 – 3(2x)2y + 3.2xy2 – y3 (Hằng đẳng thức (5))
= (2x – y)3
Thay x = 6, y = - 8 ta được:
N = (2.6 – (-8))3 = 203 = 8000
a: \(A=xy^2\left(3+6-4\right)=5xy^2\)
b: Hệ số là 5
Phần biến là \(x;y^2\)
Bậc là 3
c: \(A=5\cdot3\cdot\left(-2\right)^2=15\cdot4=60\)
a. \(A+B=x^2-2x-y^2+3y-1-2x^2+3y^2-5x+y+3\)
\(=\left(x^2-2x^2\right)-\left(2x+5x\right)+\left(3y^2-y^2\right)+\left(3y+y\right)+\left(3-1\right)\)
\(=2y^2+4y-x^2-7x+2\)
Thay `x = 2` và `y = -1` vào `A + B` ta được:
\(2.\left(-1\right)^2+4.\left(-1\right)-2^2-7.2+2=-18\)
b. \(A-B=x^2-2x-y^2+3y-1-\left(-2x^2+3y^2-5x+y+3\right)\)
\(=x^2-2x-y^2+3y-1+2x^2-3y^2+5x-y-3\)
\(=\left(x^2+2x^2\right)+\left(5x-2x\right)-\left(y^2+3y^2\right)+\left(3y-y\right)-\left(1+3\right)\)
\(=3x^2+3x-4y^2+2y-4\)
Thay `x = -2` và `y = 1` vào `A - B` ta được:
\(3.\left(-2\right)^2+3.\left(-2\right)-4.1^2+2.1^2-4=0\)
\(a,P=7xy^3-2x^2y^2-5xy^3-3x^2y^2-5\)
\(\Rightarrow P=2xy^3-5x^2y^2-5\)
b, Thay \(x=-2\) vào biểu thức \(P\) ta được :
\(P=2.\left(-2\right).y^2-5.\left(-2\right)^2.y^2-5\)
\(=-4y^2-y^2-5\)
\(=-5y^2-5\)
Vậy tại \(x=-2\) ta được \(P=-5y^2-5\)
Thay \(y=-1\) vào biểu thức \(P\) ta được
\(P=2x.\left(-1\right)^3-5x^2.\left(-1\right)^2-5\)
\(=-2x-4x^2-5\)
\(=-4x^2-2x-5\)
Vậy tại \(y=-1\) ta được \(P=-4x^2-2x-5\)