Một ô tô đang chuyển động với vận tốc 36 km/h, tài xế tắt máy và hãm phanh xe chuyển động chậm dần đều sau 50 m nữa thì dừng lại. Quãng đường xe đi được trong 4s kể từ lúc bắt đầu hãm phanh là
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tóm tắt: \(v_0=36\)km/h\(=10m\)/s\(;v=0\)m/s\(;t=10s\)
\(S=?\) sau 6s đi được.
Lời giải:
Gia tốc xe: \(v=v_0+at\Rightarrow a=\dfrac{v-v_0}{t}=\dfrac{0-10}{10}=-1\)m/s2
Quãng đường xe đi tại thời gian t=6s là:
\(v^2-v_0^2=2aS\Rightarrow S=\dfrac{v^2-v_0^2}{2a}=\dfrac{0-10^2}{2\cdot\left(-1\right)}=50m\)
Chọn gốc tọa độ tại vị trí xe hãm phanh.
Chiều \(\left(+\right)\) là chiều chuyển động \(\left(v\ge0\right)\).
Gốc thời gian là thời điểm xe hãm phanh.
Lúc \(t=0\) thì \(v_0=72km/h=20m/s\)
\(t=10s\) thì \(v=0\)
\(a,a=?m/s^2\)
Ta có : \(a=\dfrac{\Delta v}{\Delta t}=\dfrac{v-v_0}{10}=\dfrac{0-20}{10}=-2m/s^2\)
\(b,s=?m\)
Ta có : \(d=v_0t+\dfrac{1}{2}at^2=20.10+\dfrac{1}{2}\left(-2\right).10^2=100\left(m\right)\)
Do \(v\ge0\Rightarrow s=d=100m\)
\(c,\) Quãng đường đi được của xe trong 8s đầu là :
\(s_1=v_0t_1+\dfrac{1}{2}at_1^2=20.8+\dfrac{1}{2}\left(-2\right).8^2=96\left(m\right)\)
Quãng đường đi được của xe trong 2s cuối là : \(s-s_1=100-96=4\left(m\right)\)
Vì quãng đường trong 2s đầu và 2s cuối có cùng thời gian nên ta có s của 2s đầu và cuối bằng nhau.
Vậy ...
Ta có: \(v^2-v_0^2=2as\)
\(\Rightarrow a=\dfrac{v^2-v_0^2}{2s}=\dfrac{0^2-10^2}{2\cdot50}=-1\left(m/s^2\right)\)
Quãng đường mà vật di chuyển trong 4s kể từ lúc hãm phanh là:
\(s=v_0t+\dfrac{1}{2}at^2\)
\(\Rightarrow s=10\cdot4+\dfrac{1}{2}\cdot-1\cdot4^2=32\left(m\right)\)