Tìm x, biết :
a) \(x\cdot\frac{1}{2}+x\cdot\frac{1}{4}+x\cdot\frac{1}{8}=\frac{21}{24}\)
b) (x+4)+(x+9)+(x+14)+...+(x+44)+(x+49)=1430
c) x* 0,25-0,5=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a,
x.2/7.3/4=5/21
x.3/14=5/21
x=5/21:3/14
x=10/9
b,
x.1/2=1/3
x=1/3:1/2
x=2/3
c,
x:4/5=25/8:5/4
x:4/5=5/2
x=5/2.4/5=2
A, x= 5/25 : 3/4 : 2/7 = 14/15
B, x=1/3 : 1/2 = 2/3
C, x=(25/8 : 5/4)x4/5 = 5/2 x 4/5 = 2
a)\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\Leftrightarrow\left(x-1\right)^{x+2}\left[\left(x-1\right)^2-1\right]=0\Leftrightarrow x\left(x-1\right)^{x+2}\left(x-2\right)=0\)
Do đó \(x\in\left\{0;1;2\right\}\)
b)
\(\frac{1}{4}\cdot\frac{2}{6}\cdot\frac{3}{8}\cdot...\cdot\frac{31}{64}=2^x\Leftrightarrow\frac{1\cdot2\cdot3\cdot...\cdot31}{4\cdot6\cdot8\cdot...\cdot64}=2^x\Leftrightarrow\frac{31!}{\left(2\cdot2\right)\cdot\left(2\cdot3\right)\cdot\left(2\cdot4\right)\cdot...\cdot\left(2\cdot31\right)\cdot64}=2^x\)
\(\frac{31!}{2^{30}\cdot31!\cdot2^6}=2^x\Leftrightarrow\frac{1}{2^{36}}=2^x\Leftrightarrow2^{-36}=2^x\Rightarrow x=-36\)
b)
\(x-2.\left(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}\right)=\frac{16}{9}\)
\(x-2\cdot\left(\frac{1}{3}-\frac{1}{9}\right)=\frac{16}{9}\)
\(x-2=\frac{16}{9}:\left(\frac{1}{3}-\frac{1}{9}\right)\)
\(x-2=8\)
=> x = 10
a)
\(A=\frac{1}{2}.\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{2013}{2014}\cdot\frac{2014}{2015}\cdot\frac{2015}{2016}\)
\(A=\frac{1}{2016}\)
a)
( 4x - 9 ) ( 2,5 + (-7/3) . x ) = 0
\(\Rightarrow\orbr{\begin{cases}4x-9=0\\2,5+\frac{-7}{3}x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{9}{4}\\x=\frac{15}{14}\end{cases}}\)
P/s: đợi xíu làm câu b
b) \(\frac{1}{x\left(x+1\right)}\cdot\frac{1}{\left(x+1\right)\left(x+2\right)}\cdot\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2015}\)
\(\frac{-1}{x+3}=\frac{1}{2015}\)
\(\Leftrightarrow x+3=-2015\)
\(\Leftrightarrow x=-2018\)
Vậy,.........
Bài làm:
Ta có: \(\frac{1}{4}.\frac{2}{6}.\frac{3}{8}.....\frac{30}{62}.\frac{31}{64}=2^x\)
\(\Leftrightarrow\frac{1.2.3.....30.31}{2.2.2.3.2.4.....2.31.2.32}=2^x\)
\(\Leftrightarrow\frac{1}{2^{31}.2^5}=2^x\)
\(\Leftrightarrow\frac{1}{2^{36}}=2^x\)
\(\Rightarrow x=-36\)
1. \(x=\frac{61}{42}\)
2. \(x=\frac{-36}{5}\)
3. \(x=\frac{13}{11}\)
4. \(x=\frac{1}{12}\)
5.\(x=\frac{-5}{2}\)
Chứng minh rằng (9^2n+1994^93)chia heets cho 5
a) \(x\cdot\frac{1}{2}+x\cdot\frac{1}{4}+x\cdot\frac{1}{8}=\frac{21}{24}\)
\(x\cdot\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\right)=\frac{7}{8}\)
\(x\cdot\frac{7}{8}=\frac{7}{8}\)
\(\Rightarrow x=\frac{7}{8}\div\frac{7}{8}=1\)
b) \(\left(x+4\right)+\left(x+9\right)+\left(x+14\right)+.....+\left(x+44\right)+\left(x+49\right)=1430\)
\(\left(x+x+x+....+x+x\right)+\left(4+9+14+...+44+49\right)=1430\)
\(10x+265=1430\)
\(10x=1430-265\)
\(10x=1165\)
\(\Rightarrow x=\frac{1165}{10}=116,5\)
c) \(x\cdot0,25-0,5=1\)
\(x\cdot0,25=1+0,5\)
\(x\cdot0,25=1,5\)
\(\Rightarrow x=1,5\div0,25=6\)