Dùng HẰNG ĐẲNG THỨC để:
1) Phân tích thành nhân tử:
x^4+x^2.y^2+y^4 -2.x^3.y -2.x.y^3+2.x^2.y^2
2) Tính nhanh:
(1^2+3^2+5^2+...+2005^2)-(2^2+4^2+6^2+...+2004^2)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(a^3y^3+125\)
\(=\left(ay+5\right)\left(a^2y^2-5ay+25\right)\)
b) Ta có: \(8x^3-y^3-6xy\cdot\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy+y^2\right)-6xy\left(2x-y\right)\)
\(=\left(2x-y\right)\left(4x^2+2xy-6xy+y^2\right)\)
\(=\left(2x-y\right)^3\)
1) \(x^6+1\)
\(=x^6+x^4-x^4+x^2-x^2+1\)
\(=\left(x^6-x^4+x^2\right)+\left(x^4-x^2+1\right)\)
\(=x^2\left(x^4-x^2+1\right)+\left(x^4-x^2+1\right)\)
\(=\left(x^2+1\right)\left(x^4-x^2+1\right)\)
2) \(x^6-y^6\)
\(=\left(x^3+y^3\right)\left(x^3-y^3\right)\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\left(x-y\right)\left(x^2+xy+y^2\right)\)
Lời giải:
$x^4y^4-z^4=(x^2y^2)^2-(z^2)^2=(x^2y^2-z^2)(x^2y^2+z^2)$
$=(xy-z)(xy+z)(x^2y^2+z^2)$
$(x+y+z)^2-4z^2=(x+y+z)^2-(2z)^2=(x+y+z-2z)(x+y+z+2z)$
$=(x+y-z)(x+y+3z)$
$\frac{-1}{9}x^2+\frac{1}{3}xy-\frac{1}{4}y^2=\frac{-4x^2+12xy-9y^2}{36}$
$=-\frac{4x^2-12xy+9y^2}{36}=-\frac{(2x-3y)^2}{36}=-\left(\frac{2x-3y}{6}\right)^2$
a) (2x+y)3
c)(x2-y2)(x4+x2y2+y4)
d)-x3+9x2-27x+27
<=> -(x3-9x2+27x-27)
<=>-(x-3)3
a) ( 3x - 1 )2 - 4
= ( 3x - 1 ) - 22
= ( 3x - 1 - 2 )( 3x - 1 + 2 )
= ( 3x - 3 )( 3x + 1 )
= 3( x - 1 )( 3x + 1 )
b) ( x + y )2 - x2
= ( x + y - x )( x + y + x )
= y( 2x + y )
c) 100 - ( 2x - y )2
= 102 - ( 2x - y )2
= [ 10 - ( 2x - y ) ][ 10 + ( 2x - y ) ]
= ( 10 - 2x + y )( 10 + 2x - y )
d) ( 2x - 1 )2 - ( x - 1 )2
= [ ( 2x - 1 ) - ( x - 1 ) ][ ( 2x - 1 ) + ( x - 1 ) ]
= ( 2x - 1 - x + 1 )( 2x - 1 + x - 1 )
= x( 3x - 2 )
e) 4( x + 6 )2 - 9( 1 + x )2
= 22( x + 6 )2 - 32( 1 + x )2
= ( 2x + 12 )2 - ( 3 + 3x )2
= [ ( 2x + 12 ) - ( 3 + 3x ) ][ ( 2x + 12 + ( 3 + 3x ) ]
= ( 2x + 12 - 3 - 3x )( 2x + 12 + 3 + 3x )
= ( 9 - x )( 5x + 15 )
= 5( 9 - x )( x + 3 )