K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

misa

Đặt tên biểu thức là A ta có :

\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+....+\frac{1}{90}+\frac{1}{110}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{10}-\frac{1}{11}\)

\(=\left(\frac{1}{2}-\frac{1}{11}\right)+\left(\frac{1}{3}-\frac{1}{3}\right)+.....+\left(\frac{1}{10}-\frac{1}{10}\right)\)

\(=\left(\frac{1}{2}-\frac{1}{11}\right)+0+......+0\)

\(=\frac{11}{22}-\frac{2}{22}=\frac{9}{22}\)

13 tháng 7 2017

\(\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{10.11}\)

=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{10}-\frac{1}{11}\)

=\(\frac{1}{2}-\frac{1}{11}\)

=\(\frac{9}{22}\)

17 tháng 6 2017

   \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+....+\frac{1}{90}+\frac{1}{110}\)

\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}+\frac{1}{10.11}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.......+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(=\frac{1}{2}-\frac{1}{11}\)

\(=\frac{9}{22}\)

17 tháng 6 2017

\(=\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{10\cdot11}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{10}\cdot-\frac{1}{11}\)

\(=\frac{1}{2}-\frac{1}{11}\)

\(=\frac{9}{22}\)

22 tháng 3 2022

\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}+\dfrac{1}{72}+\dfrac{1}{90}\)

\(=\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}\)

\(=\dfrac{9}{10}\)

 

22 tháng 3 2022

17 tháng 6 2017

Sai đầu bài nhé, số cuối cùng phải là 110. Giải :

\(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\)

\(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}+\frac{1}{10.11}\)

=\(\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{10}-\frac{1}{11}\right)\)

=\(\left(\frac{1}{2}-\frac{1}{11}\right)+0+...+0\)

=\(\frac{9}{22}\)

17 tháng 6 2017

Mình sửa đề 1 chút nha   

      \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+........+\frac{1}{90}+\frac{1}{110}\)

\(=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+.....+\frac{1}{9.10}+\frac{1}{10.11}\)

\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+.....+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(=\frac{1}{2}-\frac{1}{11}\)

\(=\frac{9}{22}\)

10 tháng 1 2023

\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+....+\dfrac{1}{110}\)

\(=\dfrac{1}{1\times2}+\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+....+\dfrac{1}{10\times11}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{10}-\dfrac{1}{11}\)

\(=1-\dfrac{1}{11}=\dfrac{10}{11}\)

15 tháng 5 2022

\(\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{72}+\dfrac{1}{90}\)

\(=\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+\dfrac{1}{5\times6}+...+\dfrac{1}{8\times9}+\dfrac{1}{9\times10}\)

\(=\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{8}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=\dfrac{1}{3}-\dfrac{1}{10}\)

`=7/30`

15 tháng 5 2022

help me

26 tháng 6 2017

\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}+\frac{1}{110}\)

\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+....+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)

\(=\frac{1}{1}-\frac{1}{11}\)

\(=\frac{10}{11}\)

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{90}\)\(+\frac{1}{110}\) 

\(=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}+...\) \(+\frac{1}{9\cdot10}\)\(+\frac{1}{10\cdot11}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\)\(\frac{1}{5}\)\(+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{9}-\frac{1}{10}\)\(+\frac{1}{10}-\frac{1}{11}\)

\(=1-\frac{1}{11}\)

\(=\frac{10}{11}\)

\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}\)

\(=\dfrac{1}{2}-\dfrac{1}{6}\)

\(=\dfrac{1}{3}\)

6 tháng 8 2016

\(\frac{9}{10}-\frac{1}{90}-\frac{1}{72}-...-\frac{1}{6}-\frac{1}{2}\)

\(=\frac{9}{10}-\left(\frac{1}{2}+\frac{1}{6}+...+\frac{1}{72}+\frac{1}{90}\right)\)

\(=\frac{9}{10}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{8.9}+\frac{1}{9.10}\right)\)

\(=\frac{9}{10}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}\right)\)

\(=\frac{9}{10}-\left(1-\frac{1}{10}\right)\)

\(=\frac{9}{10}-\frac{9}{10}=0\)

31 tháng 12 2017

Bang  0

16 tháng 5 2022

* Bạn tham khảo nhé *

1212 ++ 1616 ++ 112112 ++ 120120 ++ 130130 ++ 142142 ++ 156156

== 11×211×2 ++ 12×312×3 ++ 13×413×4 ++ 14×514×5 ++ 15×615×6 ++ 16×716×7 ++ 17×817×8

== 1111 −− 1212 ++ 1212 −− 1313 ++ 1313 −− 1414 ++ 1414 −− 1515 ++ 1515 −− 1616 ++ 1616 −− 1717 ++ 1717 −− 1818

== 1111 −− 1818

== 8888 −− 1818

== 78