\(\frac{m}{n}\)=\(\frac{2017}{2017}\)chứng minh rằng \(\frac{m}{n}\)=\(\frac{m+2017}{n+2017}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{m}+\frac{1}{n}+\frac{1}{p}-\frac{1}{m+n+p}=0\)
\(\Leftrightarrow\frac{m+n}{mn}+\frac{m+n}{p\left(m+n+p\right)}=0\)
\(\Leftrightarrow\left(m+n\right)\left(\frac{pm+pn+p^2+mn}{mnp\left(m+n+p\right)}\right)=0\)
\(\Leftrightarrow\left(m+n\right)\left(n+p\right)\left(p+m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}m=-n\\m=-p\\p=-n\end{matrix}\right.\)
Cả 3 TH là như nhau
Ví dụ như TH1: \(\frac{1}{m^{2017}}+\frac{1}{-m^{2017}}+\frac{1}{p^{2017}}=\frac{1}{p^{2017}}\)
\(\frac{1}{m^{2017}-m^{2017}+p^{2017}}=\frac{1}{p^{2017}}\) (đpcm)
Vì \(\frac{n}{m+2017}=\frac{2017}{m+n}\Rightarrow n\left(m+n\right)=2017\left(m+2017\right)\Rightarrow n=2017\)
\(\frac{m}{n+2017}=\frac{2017}{m+n}\Rightarrow2017\left(n+2017\right)=m\left(m+n\right)\Rightarrow m=2017\)
\(\Rightarrow x=\frac{2017}{2017+2017}=\frac{2017}{2017+2017}=\frac{2017}{2017+2017}=\frac{1}{2}\)
Ta có:
\(\frac{m}{n}+2017=\frac{n}{m}+2017\Rightarrow\frac{m}{n}=\frac{n}{m}\Rightarrow m^2=n^2\)
TH1: \(m=n\)
\(\Rightarrow x=1+2017=2018\)
TH2: \(-m=n\)
\(\Rightarrow x=-1+2017=2016\)
Vậy \(\left[{}\begin{matrix}x=2018\\x=2016\end{matrix}\right.\)
Ta có: \(m+n\ne0.\)
\(\Rightarrow m+n+2017\ne2017.\)
Có:
\(x=\frac{m}{n+2017}=\frac{n}{m+2017}=\frac{2017}{m+n}\) và \(m+n+2017\ne2017.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(x=\frac{m}{n+2017}=\frac{n}{m+2017}=\frac{2017}{m+n}\)
\(\Rightarrow x=\frac{m+n+2017}{n+2017+m+2017+m+n}\)
\(\Rightarrow x=\frac{m+n+2017}{2m+2n+4034}\)
\(\Rightarrow x=\frac{m+n+2017}{2.\left(m+n+2017\right)}\)
\(\Rightarrow x=\frac{1}{2}.\)
Vậy \(x=\frac{1}{2}.\)
Chúc bạn học tốt!
Các bạn giúp ạ : @Vũ Minh Tuấn , @Băng Băng 2k6 , @Phạm Lan Hương , và cô @Akai Haruma
*Nếu \(m+n+2017\ne0\)thì theo t/c dãy tỉ số bằng nhau, ta được:
\(x=\frac{m}{n+2017}=\frac{n}{n+2017}=\frac{2017}{m+n}=\frac{1}{2}\)
*Nếu \(m+n+2017=0\)thì \(\hept{\begin{cases}m+n=-2017\\m+2017=-n\\n+2017=-m\end{cases}}\)
\(\Rightarrow x=\frac{m}{-m}=\frac{n}{-n}=\frac{2017}{-2017}=-1\)
N = \(\frac{2016+2017}{2017+2018}=\frac{2016}{2017+2018}+\frac{2017}{2017+2018}\)
Ta có: \(\frac{2016}{2017}>\frac{2016}{2017+2018}\)
\(\frac{2017}{2016}>\frac{2017}{2017+2018}\)
Nên M > N
Ta thấy : \(\frac{2016+2017}{2017+2018}\)=\(\frac{2016}{2017+2018}\)+\(\frac{2017}{2017+2018}\)
Vì : \(\frac{2016}{2017}\)>\(\frac{2016}{2017+2018}\)
\(\frac{2017}{2018}\)>\(\frac{2017}{2017+2018}\)
Cộng vế với vế ta được : \(\frac{2016}{2017}\)+\(\frac{2017}{2018}\)> \(\frac{2016}{2017+2018}\)+\(\frac{2017}{2017+2018}\)
Hay M > N
Vậy M > N
Chúc bạn hok tốt !!
Câu b đề sai nha, bây giờ đặt \(a=\sqrt{2017},b=\sqrt{2018}\)
Ta có \(\frac{a^2}{b}+\frac{b^2}{a}< a+b\Leftrightarrow ab\left(\frac{a^2}{b}+\frac{b^2}{a}\right)< ab\left(a+b\right)\)
\(\Leftrightarrow a^3+b^3< ab\left(a+b\right)\)(1)
Mà \(ab\left(a+b\right)\le\left(a^2-ab+b^2\right)\left(a+b\right)=a^3+b^3\)(2)
Từ (1), (2) => Sai
a) Ta có:
\(\frac{1}{\left(k+1\right)\sqrt{k}}=\frac{k+1-k}{\left(k+1\right)\sqrt{k}}=\frac{\left(\sqrt{k+1}+\sqrt{k}\right)\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}\)\(< \frac{2\sqrt{k+1}\left(\sqrt{k+1}-\sqrt{k}\right)}{\left(k+1\right)\sqrt{k}}=\frac{2\left(\sqrt{k+1}-\sqrt{k}\right)}{\sqrt{k+1}\sqrt{k}}=\frac{2}{\sqrt{k}}-\frac{2}{\sqrt{k+1}}\)
Cho k=1,2,....,n rồi cộng từng vế ta có:
\(\frac{1}{2}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+....+\frac{1}{\left(n+1\right)\sqrt{n}}< \left(\frac{2}{\sqrt{1}}-\frac{2}{\sqrt{2}}\right)+\left(\frac{2}{\sqrt{2}}-\frac{2}{\sqrt{3}}\right)\)\(+\left(\frac{2}{\sqrt{3}}-\frac{2}{\sqrt{4}}\right)+....+\left(\frac{2}{\sqrt{n}}-\frac{2}{\sqrt{n+1}}\right)=2-\frac{2}{\sqrt{n-1}}< 2\)
co m/n =2017/2017 => m/n=1 =>m=n => m+2017=n+2017
suy ra m+2017/n+2017 =1
ma m/n=1 => m/n=m+2017/n+2017
Ta có :
\(\frac{m}{n}=\frac{2017}{2017}\Leftrightarrow m=n\)
=> \(\frac{m+2017}{n+2017}=\frac{m+2017}{m+2017}=1=\frac{m}{n}\)
=> \(\frac{m}{n}=\frac{m+2017}{n+2017}\)(đpcm)