K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 3 2018

Trường hợp 1: Chọn 3 nữ, 2 nam  cách chọn

Trường hợp 2: Chọn 4 nữ, 1 nam có   cách chọn

Do đó có  cách chọn.

Chọn B.

24 tháng 9 2021

a) Nếu trong \(5\) học sinh phải có ít nhất \(2\) học sinh nữ và \(2\) học sinh nam thì có \(2\) trường hợp :

\(2\) nam \(3\) nữ, có : \(C^2_{10}.C^3_{10}\) cách: 

\(3\) nam và \(2\) nữ, có : \(C^3_{10}.C^2_{10}\)  cách:

Vậy tất cả có : \(2.C^2_{10}.C^3_{10}=10800\) cách.

b) Nếu trong \(5\)  học sinh phải có ít nhất \(1\) học sinh nữ và \(1\) học sinh nam thì có 4 trường hợp :

\(1\) nam và \(4\) nữ, có: \(C^1_{10}.C^4_{10}\) cách.

\(2\) nam và \(3\) , có : \(C^2_{10}.C^3_{10}\) cách.

Còn lại bn tự lm nha, mỏi tay quá

Số cách chọn là:

\(C^1_4\cdot C^2_5+C^2_4\cdot5+C^3_4=74\left(cách\right)\)

21 tháng 9 2019

26 tháng 8 2021

Th1 5hs, trong đó có 4 hs nam,1 hs nữ: 10C4+10C1 cách

th2 5hs, trong đó có 3hs nam,2 hs nữ :10C3+10C2

th3 5hs, trong đó có 2hs nam,2 hs nữ: t tự 

th4 5hs, trong đó có 1 hs nam, 4hs nữ: t tự th1

tổng số cách 2(10C3+10C2+10C4+10C1)=770 cách

4 tháng 2 2019

20 tháng 3 2018

Chọn A.

Phương pháp

- Đếm số cách chọn 3 trong 10 bạn nam và 2 trong 8 bạn nữ.

- Sử dụng quy tắc nhân đếm số cách chọn.

Cách giải:

9 tháng 2 2018

Vì trong 5 người được chọn phải có ít nhất 1 nữ và ít nhất phải có 2 nam nên số học sinh nữ gồm 1 hoặc 2 hoặc 3 nên ta có các trường hợp sau:

- Chọn 1 nữ và 4 nam.

 +) Số cách chọn 1 nữa: 5 cách

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:  A 15 2

 +) Số cách chọn 2 nam còn lại:  C 13 2

Suy ra có 5 A 15 2 C 13 2  cách chọn cho trường hợp này.

- Chọn 2 nữ và 3 nam.

 +) Số cách chọn 2 nữ: C 5 2  cách.

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:  A 15 2 cách.

 +) Số cách chọn 1 còn lại: 13 cách.

Suy ra có  13 A 15 2 C 5 2  cách chọn cho trường hợp này.

- Chọn 3 nữ và 2 nam.

 +) Số cách chọn 3 nữ :  C 5 3  cách.

 +) Số cách chọn 2 làm đội trưởng và đội phó:  A 15 2  cách.

Suy ra có  A 15 2 C 5 2  cách chọn cho trường hợp 3.

Vậy có 5 A 15 2 C 13 2 + 13 A 15 2 . C 5 2 + A 15 2 . C 5 3 = 111300  cách.

Chọn đáp án D.

25 tháng 12 2019

Vì trong 5 người được chọn phải có ít nhất 1 nữ và ít nhất phải có 2 nam nên số học sinh nữ gồm 1 hoặc 2 hoặc 3 nên ta có các trường hợp sau:

 chọn 1 nữ và 4 nam.

 +) Số cách chọn 1 nữa: 5 cách

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:  

 +) Số cách chọn 2 nam còn lại:

Suy ra có  cách chọn cho trường hợp này.

 chọn 2 nữ và 3 nam.

 +) Số cách chọn 2 nữ:  cách.

 +) Số cách chọn 2 nam làm đội trưởng và đội phó:   cách.

 +) Số cách chọn 1 còn lại: 13 cách.

Suy ra có  cách chọn cho trường hợp này.

 Chọn 3 nữ và 2 nam.

 +) Số cách chọn 3 nữ :  cách.

 +) Số cách chọn 2 làm đội trưởng và đội phó:  cách.

Suy ra có  cách chọn cho trường hợp 3.

Vậy có  cách.

Chọn D.