Chứng minh:
a) \(a^2+b^2\ge2ab\)
b) \(a^2+b^2+c^2\ge ab+ac+bc\)
c) Cho a, b, c >0. Chứng minh \(a^3+b^3+c^3\ge3abc\). Dấu bằng xảy ra khi nào?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Áp dụng BĐT AM-GM ta có:
\(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)
Xảy ra khi \(a=b\)
b)Áp dụng BĐT AM-GM ta có:
\(\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ca\end{matrix}\right.\)
\(\Rightarrow2\left(a^2+b^2+c^2\right)\ge2\left(ab+bc+ca\right)\)
\(\Rightarrow a^2+b^2+c^2\ge ab+bc+ca\)
Xảy ra khi \(a=b=c\)
c)Áp dụng BĐT AM-GM ta có:
\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)
Xảy ra khi \(a=b=c\)
==" s t nhớ là bất đẳng thức cosi dùng cho số dương nhỉ ?
\(\left(a-b\right)^2\ge0\)
<=>\(a^2-2ab+b^2\ge0\)
<=>\(a^2+b^2\ge2ab\)
b) Ta có\(\left(a-b\right)^2\ge0\)(1)
\(\left(b-c\right)^2\ge0\)(2)
\(\left(a-c\right)^2\ge0\)(3)
Cộng vế với vế ba đẳng thức (1),(2),(3) ta đc
\(a^2+b^2-2ab+b^2+c^2-2bc+a^2+c^2-2ac\ge0\)
<=>\(2a^2+2b^2+2c^2\ge2ab+2bc+2ac\)
<=>\(a^2+b^2+c^2\ge ab+bc+ac\)
3.1
Xét hiệu :
\(\left(\dfrac{a+b}{2}\right)^2-ab=\dfrac{a^2+2ab+b^2}{4}-\dfrac{4ab}{4}\)
\(=\dfrac{a^2-2ab+b^2}{4}=\dfrac{\left(a-b\right)^2}{4}\ge0\forall a,b\in R\)
Vậy \(\left(\dfrac{a+b}{2}\right)^2\ge ab,\forall a,b\in R\)
Dấu bằng xảy ra : \(\Leftrightarrow a=b\)
3.2
Áp dụng kết quả của câu 3.1 vào câu 3.2 ta được:
\(\left(a+b+c\right)^2=[a+\left(b+c\right)]^2\ge4a\left(b+c\right)\)
Mà : \(a+b+c=1\left(gt\right)\)
nên : \(1\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\) ( vì a,b,c không âm nên b+c không âm )
Mà : \(\left(b+c\right)^2\ge4bc\Leftrightarrow\left(b-c\right)^2\ge0,\forall b,c\in N\)
\(\Rightarrow b+c\ge16abc\)
Dấu bằng xảy ra : \(\Leftrightarrow\left\{{}\begin{matrix}a=b+c\\b=c\end{matrix}\right.\Leftrightarrow b=c=\dfrac{1}{4};a=\dfrac{1}{2}\)
a, \(a^2+b^2\ge2ab\)
\(b^2+c^2\ge2bc\)
\(c^2+a^2\ge ca\)
Cộng các vế => đpcm
b, Áp dung bdt a, ta có thể cm đc \(\left(x+y+z\right)^2\ge3xy+3yz+3zx\)
Thay x,y,z lần lượt bởi ab;bc;ca => ĐPCM
1/ \(a^2-b^2+c^2\ge\left(a-b+c\right)^2\)
\(\Leftrightarrow bc-ac-b^2+ab\ge0\)
\(\Leftrightarrow\left(bc-ac\right)+\left(ab-b^2\right)\ge0\)
\(\Leftrightarrow\left(a-b\right)\left(b-c\right)\ge0\)(đúng)
Vì \(\hept{\begin{cases}a\ge b\\b\ge c\end{cases}}\)
2/ \(a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2\)
\(\Leftrightarrow-d^2+cd-bd+ad+bc-ac-b^2+ab\ge0\)
\(\Leftrightarrow\left(dc-d^2\right)+\left(ad-bd\right)+\left(bc-ac\right)+\left(ba-b^2\right)\ge0\)
\(\Leftrightarrow d\left(c-d\right)+d\left(a-b\right)+\left(a-b\right)\left(b-c\right)\ge0\)
Đúng vì \(a\ge b\ge c\ge d\ge0\)
Nhân cả 2 vế với 2
Xét hiệu
2(a2+b2+c2 )-2(ab+ac+bc)
=2a2+2b2+2c2 -2ab -2ac -2bc
=a2-2ab+b2+b2-2bc+b2+c2-2ac+a2
=(a-b)2+(b-c)2+(c-a)2 luôn luôn lớn hợn hoặc =0
nên a2+b2+c2 lớn hơn hoặc bằng ab-ac-bc dấu "=" xảy ra khi a=b=c
Nhân cả 2 vế với 2
Xét hiệu
2(a2+b2+c2 )-2(ab+ac+bc)
=2a2+2b2+2c2 -2ab -2ac -2bc
=a2-2ab+b2+b2-2bc+b2+c2-2ac+a2
=(a-b)2+(b-c)2+(c-a)2 luôn luôn lớn hợn hoặc =0
nên a2+b2+c2 lớn hơn hoặc bằng ab-ac-bc dấu "=" xảy ra khi a=b=c
1) \(\Sigma\frac{a}{b^3+ab}=\Sigma\left(\frac{1}{b}-\frac{b}{a+b^2}\right)\ge\Sigma\frac{1}{a}-\Sigma\frac{1}{2\sqrt{a}}=\Sigma\left(\frac{1}{a}-\frac{2}{\sqrt{a}}+1\right)+\Sigma\frac{3}{2\sqrt{a}}-3\)
\(\ge\Sigma\left(\frac{1}{\sqrt{a}}-1\right)^2+\frac{27}{2\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)}-3\ge\frac{27}{2\sqrt{3\left(a+b+c\right)}}-3=\frac{3}{2}\)
câu a ) chuyển vế => đpcm
câu b) nhân 2 vế vs 2 rồi chuyển vế => đpcm
câu c) chuyển vế pt đa thức thành nhân tử ( cái này lớp 8 đã pt rồi)=> đpcm