tìm GTLN ( hoặc nhỏ nhất) của đa thức sau
(x-1)^2+3 1-x^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^2-12x+11=\left(2x\right)^2-2.x.6+36-\) \(25\)
= \(\left(2x-6\right)^2-25>=-25\)
A đạt GTNN = -25 <=> \(\left(2x-6\right)^2=0\)
<=> \(x=3\)
các câu còn lại tương tự
TÌM GIÁ TRỊ NHỎ NHẤT, LỚN NHẤT CỦA BIỂU THỨC
\(a,A=4x^2-12x+11\)
\(A=4x^2-12x+9+2\)
\(A=\left(2x-3\right)^2+2\)
Nhận xét: \(\left(2x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x-3\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(2x-3\right)^2=0\Rightarrow2x=3\Rightarrow x=\frac{3}{2}\)
Vậy \(minA=2\Leftrightarrow x=\frac{3}{2}\)
\(b,B=x^2-x+1\)
\(B=x^2-2x.\frac{1}{2}+\left(\frac{1}{2}\right)^2-\left(\frac{1}{2}\right)^2+1\)
\(B=\left(x-\frac{1}{2}\right)^2-\frac{1}{4}+1\)
\(B=\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Nhận xét: \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-\frac{1}{2}\right)^2=0\Rightarrow x=\frac{1}{2}\)
Vậy \(minB=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
\(c,C=-x^2+6x-15\)
\(C=-\left(x^2-6x+15\right)\)
\(C=-\left(x^2-6x+4+11\right)\)
\(C=-\left[\left(x-2\right)^2+11\right]\)
\(C=-\left(x-2\right)^2-11\)
Nhận xét: \(-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2-11\le-11\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy \(maxC=-11\Leftrightarrow x=2\)
\(d,D=\left(x-3\right)\left(1-x\right)-2\)
\(D=x-x^2-3+3x-2\)
\(D=-x^2+4x-5\)
\(D=-\left(x^2-4x+5\right)\)
\(D=-\left(x^2-4x+4+1\right)\)
\(D=-\left[\left(x-2\right)^2+1\right]\)
\(D=-\left(x-2\right)^2-1\)
Nhận xét: \(-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2-1\le-1\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow-\left(x-2\right)^2=0\Rightarrow x=2\)
Vậy \(maxD=-1\Leftrightarrow x=2\)
My Nguyễn ơi,bạn truy cập vào đường link này để tìm câu hỏi tương tự của câu a/Bài 1 nhé
https://vn.answers.yahoo.com/question/index?qid=20110206184834AAokV5m&sort=N
Thời gian có hạn copy cái này hộ mình vào google xem nha :
https://lazi.vn/quiz/d/16491/nhac-edm-la-loai-nhac-the-loai-gi
Vào xem xong các bạn nhận được 1 thẻ cào mệnh giá 100k nhận thưởng bằng cách nhắn tin vs mình và 1 phần thưởng bí mật là chiếc áo đá bóng,....
Có 500 giải nhanh nha đã có 200 người nhận rồi
1;\(x^3+3x=3x^2+1\)
\(\Rightarrow x^3+3x-3x^2-1=0\)
\(\Rightarrow x^3-3x^2+3x-1=0\)
\(\Rightarrow\left(x-1\right)^3=0\)
\(\Rightarrow x=1\)
2;\(x^2-3x\)
\(=x^2-2.\frac{3}{2}x+\frac{9}{4}-\frac{9}{4}\)
\(=\left(x-\frac{3}{2}\right)^2+\left(-\frac{9}{4}\right)\ge-\frac{9}{4}\left[\left(x-\frac{3}{2}\right)^2\ge0\right]\)
Vậy Min \(x^2-3x=-\frac{9}{4}< =>x=\frac{3}{2}\)
b: Ta có: \(x^2-x+5\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{19}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}\ge\dfrac{19}{4}\forall x\)
\(\Leftrightarrow\dfrac{2022}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{19}{4}}\le\dfrac{8088}{19}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Lời giải:
Ta có:
$x^2-3x+11=(x-\frac{3}{2})^2+\frac{35}{4}\geq \frac{35]{4}$
$\Rightarrow \frac{31}{x^2-3x+11}\leq 31:\frac{35}{4}=\frac{124}{35}$
$\Rightarrow \frac{31}{x^2-3x+11}+15\leq \frac{649}{35}$
Vậy gtln của biểu thức là $\frac{649}{35}$ khi $x=\frac{3}{2}$
BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4
MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2
=>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2
=>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2
b,A=y(y+1)(y+2)(y+3)
=>A =[y(y+3)] [(y+1)(y+2)]
=>A=(y2+3y) (y2+3y+2)
Đặt X=y2+3y+1
=>A=(X+1)(X-1)
=>A=X2-1
=>A=(y2+3y+1)2-1
MÀ (y2+3y+1)2>=0 với mọi giá trị của y
=>(y2+3y+1)2-1>=-1
Vậy GTNN của Alà -1
c,B=x3+y3+z3-3xyz
=>B=(x3+y3)+z3-3xyz
=>B=(x+y)3-3xy(x+y)+z3-3xyz
=>B=[(x+y)3+z3]-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)
=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)
=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)
A= |x+1|+5
Vì |x+1| > hoặc =0 => |x+1|+5 > hoặc =5
Dấu = xảy ra <=> x+1=0=> x=-1
Vậy A đạt GTNN =5 <=> x=-1
Còn câu b bạn tự làm
ủng hộ nha
\(a,\) Ta có: \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-1\right)^2+3\ge3\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)
Vậy \(GTNN\) của đa thức là \(3\) khi \(x=1.\)
\(b,\) Ta có: \(x^2\ge0\forall x\)
\(\Rightarrow-x^2\le0\forall x\)
\(\Rightarrow1-x^2\le1\forall x\)
Dấu \("="\) xảy ra \(\Leftrightarrow x^2=0\Leftrightarrow x=0\)
#\(Toru\)