K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)

\(\begin{array}{l}A(x) = {x^3} + \dfrac{3}{2}x - 7{x^4} + \dfrac{1}{2}x - 4{x^2} + 9\\ =  - 7{x^4} + {x^3} - 4{x^2} + \left( {\dfrac{3}{2}x + \dfrac{1}{2}x} \right) + 9\\ =  - 7{x^4} + {x^3} - 4{x^2} + 2x + 9\\B(x) = {x^5} - 3{x^2} + 8{x^4} - 5{x^2} - {x^5} + x - 7\\ = \left( {{x^5} - {x^5}} \right) + 8{x^4} + \left( { - 3{x^2} - 5{x^2}} \right) + x - 7\\ = 0 + 8{x^4} + ( - 8{x^2}) + x - 7\\ = 8{x^4} - 8{x^2} + x - 7\end{array}\)

b) * Đa thức A(x):

+ Bậc của đa thức là: 4

+ Hệ số cao nhất là: -7

+ Hệ số tự do là: 9

* Đa thức B(x):

+ Bậc của đa thức là: 4

+ Hệ số cao nhất là: 8

+ Hệ số tự do là: -7

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

\(\begin{array}{l}a)A = 3x - 4{x^4} + {x^3}\\ =  - 4{x^4} + {x^3} + 3x\\b)B =  - 2{x^3} - 5{x^2} + 2{x^3} + 4x + {x^2} - 5\\ = ( - 2{x^3} + 2{x^3}) + \left( { - 5{x^2} + {x^2}} \right) + 4x - 5\\ = 0 + ( - 4{x^2}) + 4x - 5\\ =  - 4{x^2} + 4x - 5\\c)C = {x^5} - \dfrac{1}{2}{x^3} + \dfrac{3}{4}x - {x^5} + 6{x^2} - 2\\ = \left( {{x^5} - {x^5}} \right) - \dfrac{1}{2}{x^3} + 6{x^2} + \dfrac{3}{4}x - 2\\ =  - \dfrac{1}{2}{x^3} + 6{x^2} + \dfrac{3}{4}x - 2\end{array}\)

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

a)

\(\begin{array}{l}P(x) = 5{x^3} + 2{x^4} - {x^2} + 3{x^2} - {x^3} - 2{x^4} - 4{x^3}\\ = \left( {2{x^4} - 2{x^4}} \right) + \left( {5{x^3} - {x^3} - 4{x^3}} \right) + \left( { - {x^2} + 3{x^2}} \right)\\ = 0 + 0 + 2{x^2}\\ = 2{x^2}\\Q(x) = 3x - 4{x^3} + 8{x^2} - 5x + 4{x^3} + 5\\ = \left( { - 4{x^3} + 4{x^3}} \right) + 8{x^2} + \left( {3x - 5x} \right) + 5\\ = 0 + 8{x^2} + ( - 2x) + 5\\ = 8{x^2} - 2x + 5\end{array}\)

b) P(1) = 2.12 = 2

P(0) = 2. 02 = 0

Q(-1) = 8.(-1)2 – 2.(-1) +5 = 8 +2 +5 =15

Q(0) = 8.02 – 2.0 + 5 = 5

18 tháng 5 2021

\(2x^2+3x-5=0\)

\(< =>2x^2-2x+5x-5=0\)

\(< =>2x\left(x-1\right)+5\left(x-1\right)=0\)

\(< =>\left(x-1\right)\left(2x+5\right)=0\)

\(< =>\orbr{\begin{cases}x=1\\x=-\frac{5}{2}\end{cases}}\)

18 tháng 5 2021

\(\hept{\begin{cases}x+2y=1\\-3x+4y=-18\end{cases}}\)

\(< =>\hept{\begin{cases}-3x-6y=-3\\-3x-6y+10y=-18\end{cases}}\)

\(< =>\hept{\begin{cases}x+2y=1\\10y=-18+3=-15\end{cases}}\)

\(< =>\hept{\begin{cases}x+2y=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x-3=1\\y=-\frac{3}{2}\end{cases}< =>\hept{\begin{cases}x=4\\y=-\frac{3}{2}\end{cases}}}}\)

`7,`

`a,`

\(M(x) = - 5x ^ 4 + 3x ^ 5 + x(x ^ 2 + 5) + 14x ^ 4 - 6x ^ 5 - x ^ 3 + x - 1 \)

\(M(x)=-5x^4+3x^5+x^3+5x+14x^4-6x^5-x^3+x-1\)

`M(x)=(3x^5-6x^5)+(-5x^4+14x^4)+(x^3-x^3)+(5x+x)-1`

`M(x)=-3x^5+9x^4+6x-1`

 

\(N(x)=x ^ 4 (x - 5) - 3x ^ 3 + 3x + 2x ^ 5 - 4x ^ 4 + 3x ^ 3 - 5 \)

\(N(x)=x^5-5x^4-3x^3+3x+2x^5-4x^4+3x^3-5\)

`N(x)=(x^5+2x^5)+(-5x^4-4x^4)+(-3x^3+3x^3)+3x-5`

`N(x)=3x^5-9x^4+3x-5`

`b,`

`H(x)=M(x)+N(x)`

\(H(x)=(-3x^5+9x^4+6x-1)+(3x^5-9x^4+3x-5) \)

`H(x)=-3x^5+9x^4+6x-1+3x^5-9x^4+3x-5`

`H(x)=(-3x^5+3x^5)+(9x^4-9x^4)+(6x+3x)+(-1-5)`

`H(x)=9x-6`

 

`G(x)=M(x)-N(x)`

\(G(x)=(-3x^5+9x^4+6x-1)-(3x^5-9x^4+3x-5)\)

`G(x)=-3x^5+9x^4+6x-1-3x^5+9x^4-3x+5`

`G(x)=(-3x^5-3x^5)+(9x^4+9x^4)+(6x-3x)+(-1+5)`

`G(x)=-6x^5+18x^4+3x+4`

`c,`

`H(x)=9x-6`

Hệ số cao nhất của đa thức: `9`

Hệ số tự do: `-6`

`G(x)=-6x^5+18x^4+3x+4`

Hệ số cao nhất của đa thức: `-6`

Hệ số tự do: `4`

`d,`

`H(-1)=9*(-1)-6=-9-6=-15`

`H(1)=9*1-6=9-6=3`

`G(1)=-6*1^5+18*1^4+3*1+4`

`G(1)=-6+18+3+4=12+3+4=15+4=19`

`G(0)=-6*0^5+18*0^4+3*0+4=4`

`H(-3/2)=9*(-3/2)-6=-27/2-6=-39/2`

`e,`

Đặt `H(x)=9x-6=0`

`-> 9x=0+6`

`-> 9x=6`

`-> x=6 \div 9`

`-> x=2/3`

Vậy, nghiệm của đa thức là `x=2/3.`

HQ
Hà Quang Minh
Giáo viên
13 tháng 1

a) Phân tích các đa thức \({x^4} - 4{{\rm{x}}^3} - 7{{\rm{x}}^2} + 8{\rm{x}} + 10\)thành nhân tử:

• Sử dụng lệnh Factor(<đa thức>) (hoặc Factorise(<đa thức>)).

• Nhập biểu thức trên dòng lệnh của cửa sổ CAS sau đó nhấn Enter, kết quả sẽ được hiển thị ngay bên dưới.

Vậy \({x^4} - 4{{\rm{x}}^3} - 7{{\rm{x}}^2} + 8{\rm{x}} + 10 = \left( {x - 5} \right)\left( {x + 1} \right)\left( {{x^2} - 2} \right)\)

b) Phân tích các đa thức \({\left( {x + y + z} \right)^3} - {x^3} - {y^3} - {z^3}\) thành nhân tử:

• Sử dụng lệnh Factor(<đa thức>) (hoặc Factorise(<đa thức>)).

• Nhập biểu thức trên dòng lệnh của cửa sổ CAS sau đó nhấn Enter, kết quả sẽ được hiển thị ngay bên dưới.

Vậy \({\left( {x + y + z} \right)^3} - {x^3} - {y^3} - {z^3} = 3\left( {y + z} \right)\left( {x + z} \right)\left( {x + y} \right)\)

HQ
Hà Quang Minh
Giáo viên
12 tháng 1

\(\begin{array}{l}P = 5{x^4} - 3{x^3}y + 2x{y^3} - {x^3}y + 2{y^4} - 7{x^2}{y^2} - 2x{y^3}\\ = 5{x^4} + 2{y^4} + \left( { - 3{x^3}y - {x^3}y} \right) + \left( {2x{y^3} - 2x{y^3}} \right) - 7{x^2}{y^2}\\ = 5{x^4} + 2{y^4} - 4{x^3}y - 7{x^2}{y^2}\\Q = {x^3} + {x^2}y + x{y^2} - {x^2}y - x{y^2} - {x^3}\\ = \left( {{x^3} - {x^3}} \right) + \left( {{x^2}y - {x^2}y} \right) + \left( {x{y^2} - x{y^2}} \right)\\ = 0\end{array}\)

Do đó, bậc của đa thức P là 4; đa thức Q không có bậc.

Tại x = 1; y = -2, ta có:

 \(\begin{array}{l}P = 5.{1^4} + 2{(-2)^4} - 4.{1^3}(-2) - 7.{1^2}{(-2)^2}\\=5+2.16-4.(-2)-7.4=5+32+8-28\\=17\end{array}\)

\(Q = 0\)

a, A(x) = -4x5 - x3 + 42 + 5x + 7 + 4x5 - 6x2

= ( 4x5 - 4x5) - x3 + ( 4x2 - 6x2) + 5x + 7

= -x3 - 2x2 +5x +7

B(x) = -3x4 - 4x3 + 10x2 - 8x + 5x3 -7 +8x

= -3x4 + ( 5x3 - 4x3 ) + 10x2 + ( 8x - 8x )

= -3x4 + x3 + 10x2

b, A(x) = -x3 - 2x2 + 5x +7

+

B(x) = -3x4 + x3 + 10x2

____________________________________

P(x) = A(x) +B(x) = -3x4 + 8x2 + 5x + 7

A(x) = -x3 - 2x2 + 5x + 7

_

B(x) = -3x4 + x3 + 10x2

________________________________________

Q(x) = A(x) - B(x) = 3x4 - 2x3 - 12x2 + 5x + 7

HQ
Hà Quang Minh
Giáo viên
19 tháng 9 2023

\(\begin{array}{l}a)3{x^7}:\dfrac{1}{2}{x^4} = (3:\dfrac{1}{2}).({x^7}:{x^4}) = 6{x^3}\\b)( - 2x):x = [( - 2):1].(x:x) =  - 2\\c)0,25{x^5}:( - 5{x^2}) = [0,25:( - 5)].({x^5}:{x^2}) =  - 0,05.{x^3}\end{array}\)

15 tháng 5 2017

a) x5-3x2+x4-\(\dfrac{1}{2}\)x-x5+5x4+x2-1

= (x5-x5)+(x4+5x4)+(x2-3x2)-\(\dfrac{1}{2}\)x-1

= 6x4-2x2-\(\dfrac{1}{2}\)x-1

b) x-x9+x2-5x3+x6-x+3x9+2x6-x3+7

= (3x9-x9)+(2x6+x6)-(5x3+x3)+x2+(x-x)+7

= 2x9+3x6-6x3+x2+7