K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2023

\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{2020^2}-1\right)\)

\(B=\left(\dfrac{1}{2^2}-\dfrac{2^2}{2^2}\right)\left(\dfrac{1}{3^2}-\dfrac{3^2}{3^2}\right)....\left(\dfrac{1}{2020^2}-\dfrac{2020^2}{2020^2}\right)\)

\(B=\left(\dfrac{1-2^2}{2^2}\right)\left(\dfrac{1-3^2}{3^2}\right)...\left(\dfrac{1-2020^2}{2020^2}\right)\)

\(B=\dfrac{\left(1-2\right)\left(1+2\right)}{2^2}\cdot\dfrac{\left(1-3\right)\left(1+3\right)}{3^2}....\cdot\dfrac{\left(2020-1\right)\left(2020+1\right)}{2020^2}\) 

\(B=\dfrac{-1\cdot3}{2^2}\cdot\dfrac{-2\cdot4}{3^2}\cdot\dfrac{-3\cdot5}{4^2}\cdot....\cdot\dfrac{-2019\cdot2021}{2020}\)

\(B=\dfrac{-1\cdot-2\cdot-3\cdot...\cdot-2019}{2\cdot3\cdot4\cdot....\cdot2020}\)

\(B=\dfrac{-1\cdot-1\cdot-1\cdot....\cdot-1}{1}\)

\(B=-1\) (2019 số -1) 

Mà: \(-1< \dfrac{1}{2}\)

\(\Rightarrow B< \dfrac{1}{2}\)

19 tháng 9 2023

 \(\dfrac{1}{2^2}\)\(\dfrac{1}{3^2}\);...;\(\dfrac{1}{2020^2}\) < 1 ⇒ 0 > \(\dfrac{1}{2^2}\) - 1 > \(\dfrac{1}{3^2}\) - 1 >..> \(\dfrac{1}{2020^2}\) - 1

Xét dãy số 2; 3; 4;...; 2020 dãy số này có số số hạng là:

        (2020 - 2):1 + 1 = 2019 (số hạng)

Vậy B là tích của 2019 số âm nên B < 0 ⇒ B < \(\dfrac{1}{2}\)

 

 

 

 

 

17 tháng 8 2021

\(A=-\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)...\left(1-\dfrac{1}{2014^2}\right)\)

\(A=\dfrac{\left(1\cdot3\right)\left(2\cdot4\right)\left(3\cdot5\right)...\left(2012\cdot2014\right)\left(2013\cdot2015\right)}{\left(2\cdot2\right)\left(3\cdot3\right)\left(4\cdot4\right)...\left(2013\cdot2013\right)\left(2014\cdot2014\right)}\)

\(A=\dfrac{\left(1\cdot2\cdot3\cdot...\cdot2012\cdot2013\right)\left(3\cdot4\cdot5\cdot...\cdot2014\cdot2015\right)}{\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)\left(2\cdot3\cdot4\cdot...\cdot2013\cdot2014\right)}\)

\(A=\dfrac{1\cdot2015}{2014\cdot2}=\dfrac{2015}{4028}\)

Vì \(\dfrac{2015}{4028}>-\dfrac{1}{2}\) nên A > B

20 tháng 9 2023

\(B=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{100^2}\right)\)

\(B=\left(\dfrac{2^2}{2^2}-\dfrac{1}{2^2}\right)\cdot\left(\dfrac{3^2}{3^2}-\dfrac{1}{3^2}\right)....\left(\dfrac{100^2}{100^2}-\dfrac{1}{100^2}\right)\)

\(B=\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}....\cdot\dfrac{100^2-1}{100^2}\)

\(B=\dfrac{\left(2+1\right)\left(2-1\right)}{2^2}\cdot\dfrac{\left(3+1\right)\left(3-1\right)}{3^2}\cdot...\cdot\dfrac{\left(100+1\right)\left(100-1\right)}{100^2}\)

\(B=\dfrac{1\cdot3}{2^2}\cdot\dfrac{2\cdot4}{3^2}\cdot\dfrac{3\cdot5}{4^2}\cdot...\cdot\dfrac{99\cdot101}{100^2}\)

\(B=\dfrac{1\cdot2\cdot3\cdot4\cdot5\cdot...\cdot101}{2^2\cdot3^2\cdot4^2\cdot5^2\cdot....\cdot100^2}\)

\(B=\dfrac{1\cdot101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)

\(B=\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)

Mà: \(\dfrac{1}{2}=\dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\) 

Ta có: \(101< 3\cdot4\cdot5\cdot...\cdot100\)

\(\Rightarrow\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}< \dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\)

\(\Rightarrow B< \dfrac{1}{2}\)     

31 tháng 12 2023

a: \(A=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\)

\(=-\dfrac{1}{10}\)

9<10

=>1/9>1/10

=>\(-\dfrac{1}{9}< -\dfrac{1}{10}\)

=>\(A>-\dfrac{1}{9}\)

b: \(B=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{9}-1\right)\cdot...\cdot\left(\dfrac{1}{100}-1\right)\)

\(=\left(\dfrac{1}{2}-1\right)\left(\dfrac{1}{3}-1\right)\cdot...\cdot\left(\dfrac{1}{10}-1\right)\left(\dfrac{1}{2}+1\right)\left(\dfrac{1}{3}+1\right)\cdot...\cdot\left(\dfrac{1}{10}+1\right)\)

\(=\dfrac{-1}{2}\cdot\dfrac{-2}{3}\cdot...\cdot\dfrac{-9}{10}\cdot\dfrac{3}{2}\cdot\dfrac{4}{3}\cdot...\cdot\dfrac{11}{10}\)

\(=\dfrac{-1}{10}\cdot\dfrac{11}{2}=\dfrac{-11}{20}\)

20<21

=>\(\dfrac{11}{20}>\dfrac{11}{21}\)

=>\(-\dfrac{11}{20}< -\dfrac{11}{21}\)

=>\(B< -\dfrac{11}{21}\)

20 tháng 7 2018

A = \(\left(-2\right).\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{214}\right)\)

= \(\left(-2\right).\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{215}{214}\right)\)

= \(\dfrac{\left(-2\right).\left(-3\right).\left(-4\right).\left(-5\right)...\left(-215\right)}{1.2.3.4...214}\)

= \(\dfrac{2.3.4.5...215}{1.2.3.4...214}\)

= \(\dfrac{215}{1}=215\)

20 tháng 7 2018

B = \(\left(-1\dfrac{1}{2}\right).\left(-1\dfrac{1}{3}\right).\left(-1\dfrac{1}{4}\right)....\left(-1\dfrac{1}{299}\right)\)

= \(\left(-\dfrac{3}{2}\right).\left(-\dfrac{4}{3}\right).\left(-\dfrac{5}{4}\right)...\left(-\dfrac{300}{299}\right)\)

= \(\dfrac{\left(-3\right).\left(-4\right).\left(-5\right)...\left(-300\right)}{2.3.4...299}\)

= \(\dfrac{3.4.5...300}{2.3.4.5...299}\)

= \(\dfrac{300}{2}=150\)

10 tháng 4 2021

a) Quy luật là gì ??

b) 

Đặt

 \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2020}}\\\Rightarrow2A=1+\dfrac{1}{2}+...+\dfrac{1}{2^{2019}}\\ \Rightarrow2A-A=1-\dfrac{1}{2^{2020}}\Rightarrow A=1-\dfrac{1}{2^{2020}}\)

Suy ra , phương trình trở thành :

213 -x  =13

<=> x=200

19 tháng 4 2017

\(A=4.\dfrac{25}{16}+25.\left[\dfrac{9}{16}:\dfrac{125}{64}\right]:\dfrac{-27}{8}\)

\(=\dfrac{25}{16}+25.\dfrac{36}{125}:\dfrac{-27}{8}=-\dfrac{137}{240}\left(1\right)\)

\(B=125.\left[\dfrac{1}{25}+\dfrac{1}{64}:8\right]-64.\dfrac{1}{64}\)

\(=125.\dfrac{89}{1600}:8-64.\dfrac{1}{64}=\dfrac{-67}{512}\left(2\right)\)

Vì (2) > (1) => B > A

24 tháng 9 2017

Bài 2:

\(\left(\dfrac{2}{5}\right)^x>\left(\dfrac{5}{2}\right)^{-3}.\left(\dfrac{-2}{5}\right)^2\)

\(\Rightarrow\left(\dfrac{2}{5}\right)^x>\left(\dfrac{2}{5}\right)^3.\left(\dfrac{2}{5}\right)^2\)

\(\Rightarrow\left(\dfrac{2}{5}\right)^x>\left(\dfrac{2}{5}\right)^5\)

\(\dfrac{2}{5}\ne\pm1;\dfrac{2}{5}\ne0\) nên \(x>5\)

Vậy \(x>5\) thoả mãn yêu cầu đề bài.

Chúc bạn học tốt!!!

24 tháng 9 2017

Bài 1:

\(C=\left(\dfrac{1}{2^2-1}\right)\left(\dfrac{1}{3^2-1}\right).....\left(\dfrac{1}{100^2-1}\right)\)

\(C=\left(\dfrac{1}{\left(2-1\right)\left(2+1\right)}\right)\left(\dfrac{1}{\left(3-1\right)\left(3+1\right)}\right).....\left(\dfrac{1}{\left(100-1\right)\left(100+1\right)}\right)\)

\(C=\dfrac{1}{1.3}\dfrac{1}{2.4}.....\dfrac{1}{99.101}=\dfrac{1}{101!}\)

Chúc bạn học tốt!!!

18 tháng 4 2021

B=\(\dfrac{1}{2}:\left(-1\dfrac{1}{2}\right):1\dfrac{1}{3}:....:\left(-1\dfrac{1}{100}\right)\)

   =\(\dfrac{1}{2}:\dfrac{-3}{2}:\dfrac{4}{3}:....:\dfrac{-101}{100}\)

   =\(\dfrac{1}{2}.\dfrac{-2}{3}.\dfrac{3}{4}........\dfrac{-100}{101}\)

   =\(\dfrac{1.\left(-2\right).3......\left(-100\right)}{2.3.4...........101}\)

   =\(\dfrac{1}{101}\)

20 tháng 12 2017

1/\(\dfrac{-2}{5}\)

2/-21

21 tháng 12 2017

1/ \(4\left(\dfrac{-1}{2}\right)^3+\dfrac{1}{2}:5\)

\(=4.\dfrac{-1}{8}+\dfrac{1}{2}.\dfrac{1}{5}\)

\(=\dfrac{-1}{2}+\dfrac{1}{10}\)

\(=\dfrac{-5}{10}+\dfrac{1}{10}\)

\(=\dfrac{-4}{10}\)

\(=\dfrac{-2}{5}\)

2/ \(17\dfrac{1}{5}:\left(-\dfrac{5}{7}\right)-2\dfrac{1}{5}.\left(-\dfrac{7}{5}\right)\)

\(=\dfrac{86}{5}.\left(\dfrac{-7}{5}\right)-\dfrac{11}{5}.\left(\dfrac{-7}{5}\right)\)

\(=\dfrac{-7}{5}.\left(\dfrac{86}{5}-\dfrac{11}{5}\right)\)

\(=\dfrac{-7}{5}.15\)

\(=-21\)