Chứng minh rằng không tồn tại số tự nhiên n để:
a, \(n^2+100=20192019201920192019\)
b, \(n^2-20=12345678910\)
cứu e tối thứ bảy e nộp r
:-((
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
n2 chỉ có thể có các chữ số tận cùng là 0,1,4,5,6,9
Nên n2 + 2002 có các chữ số tận cùng lần lượt là 2;3;8;7;8;3
Mà số có tận cùng là các chữ số 2,3,7,8 ko là số chính phương.
Do đó: n2 + 2002 không là số chính phương với mọi n là STN.
giả sử n^2+2008 là 1 số chính phương
suy ra n^2+2008=a^2(a>0)
a^2-n^2=2008
(a-n)(a+n)=2008
thấy a+n>a-n
suy ra a+n)(a-n)= mấy nhân mấy đó (mik chưa tính)
thay vào tìm đc n
nhưng n không là stn
nên n^2+2008 ko là số chính phương vơi n là stn
Đặt \(n^2+2018=m^2\)
Ta có một số chính phương chia cho 4 dư 0 hoặc 1
\(n^2+2018=m^2\)=>\(m^2-n^2=2018\)
xét số dư của \(m^2-n^2\)cho 4
ta có bảng
\(m^2\) 0 1 1 0
\(n^2\) 0 1 0 1
\(m^2-n^2\) 0 0 1 -1
mà \(2018\equiv2\left(mod4\right)\)
mà một số cp chia co 4 dư o hoặc 1
vậy o tìm đc số thoả mãn
T I C K nha!
Mình cũng lớp 6 nè, nhưng mình bận quá không có thời gian để nghĩ,sorry bạn nhìu nhoa=)))
Nếu n là số lẻ n có dạng : 2k + 1 ( k\(\in\) N)
A = 2018 + ( 2k+ 1+ 1)2
A = 2018 + (2k+2)2
A = 2018 + 4.( k+1)2 ⇒ A ⋮ 2 Nếu A là số chính phương
⇒ A ⋮ 4 ( tính chất 1 số chính phương )
⇒ 2018 ⋮ 4 ( vô lý)
Nếu n là số chẵn n =2k ( k \(\in\) N)
A = 2018 + ( 2k + 1)2;
2k + 1 không chia hết cho 4 ⇒ ( 2k+1)2 : 4 dư 1 ( tc của 1 số chính phương)
A = 2018 + ( 2k + 1)2 : 4 dư 3 ⇒ A không phải là số chính phương vì một số chính phương chia 4 chỉ có thể dư 0 hoặc 1.
Vậy không thể tồn tại n để 2018 + ( n +1)2 là số chính phương
Gỉa sử 2018 + \(n^2\) là số chính phương => 2018 + \(n^2\) = \(a^2\) ( a là số tự nhiên )
=> 2018 = \(a^2\)- \(n^2\) = (a - n)(a + n)
Ta có: (a + n) - (a - n) = a + n - a +n = 2n ( chia hết cho 2 )
\(\Rightarrow\) 2 số m - n và m + n phải có cùng tính chẵn lẻ
Mà 2018 = 1.2018 = 2.1009 với các cặp số (1;2018) và (2;1009) đều không cùng tính chẵn lẻ
Vậy ta kết luận: 2018 + n^2 không là số chính phương
Giả sử : n^2 + 2006 là số chính phương
=> n2 + 2006 = k2 ( k thuộc N )
=> 2006 = k2 - n2 = ( k - n ).( k + n )
Ta có : 2006 = 2 x 1003
=> k - n = 2 => n = 2 + k
k + n = 1003
=> k + 2 + k = 1003
=> 2k = 1001 => k = 1001/2 ( loại )
Vậy giả thiết không đúng => n^2 + 2006 ko là số chính phương
kudo shinichi làm sai đề rồi phải như thế này nè:
để n^2 +2002 là số chính phương
=> n^2 +2002 =a^2 ( với a là số tự nhiên #0)
=> a^2 -n^2 =2002
=> (a-n)(a+n) =2002
do 2002 chia hết cho 2=> a-n hoặc a+n phải chia hết cho 2
mà a-n -(a+n) =-2n chia hết cho 2
=> a-n và a+n cung tính chẵn lẻ => a-n ,a+n đều chia hết cho 2
=>(a-n)(a+n) chia hết cho 4 mà 2002 không chia hết cho 4
=> vô lý
k cho tớ nha
ai k mh mh k lại
Ta chọn n=21999
Ta có:1+1/2+1/3+...+1/n=1+1/2+(1/3+1/22)+(1/5+1/6+1/7+1/2^3)+(1/9+...+1/2^4)+...+(1/21998+1+...+1/21999)>1+1/2+1/22.2+1/23.22+1/24.23+...+1/21999.21998=1+1/2.1999=1000,5>1000(đpcm)