K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2021

Xét tam giác ABC có:

M là trung điểm AB

N là trung điểm BC

=> MN là đường trung bình

=> MN//AC và \(MN=\dfrac{1}{2}AC\left(1\right)\)

Xét tam giác ADC có:

P là trung điểm DC

Q là trung điểm AD

=> PQ là đường trung bình

=> PQ//AC và \(PQ=\dfrac{1}{2}AC\left(2\right)\)

\(\left(1\right),\left(2\right)\)

\(\Rightarrow\left\{{}\begin{matrix}PQ//MN\\PQ=MN\end{matrix}\right.\)

=> MNPQ là hình bình hành

Phần còn lại thì điểm I đâu?

Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và MQ=BD/2(1)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và NP=BD/2(2)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

a: Xét ΔABD có 

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và MQ=BD/2(1)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và NP=BD/2(2)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

hay MQPN là hình bình hành

20 tháng 12 2020

ai giup mik voi 

 

 

 

a: Xét ΔBAD có

M,Q lần lượt là tđiểm của AB và AD

nên MQ là đường trung bình

=>MQ//BD và MQ=BD/2(1)

Xét ΔBCD có

N,P lần lượt là trung điểm của CB và CD

nên NP là đường trung bình

=>NP//BD và NP=BD/2(2)

Từ (1) và (2) suy a MQ//NP và MQ=NP

=>MNPQ là hình bình hành

b: Xét ΔABC có

M,N lần lượt là trung điểm của BA và BC

nên MN là đường trung bình

=>MN=AC/2 và MN//AC

Để MNPQ là hình chữ nhật thì MN vuông góc với MQ

=>AC vuông góc với BD

24 tháng 8 2023

Vì ABCD là hbh nên => AB=DC, AD=BC

có M là tđ của AB, P là trung điểm của DC mà AB=DC=>MB=DP (1)

N là tđ của BC, Q là tđ của AD mà AD=BC=> QD=BN (2)

Có góc QDB=góc MBN (ABCD là hbh) (3)

(1),(2),(3)=> tam giác MPN=tam giác QDP=>QP=MN

tương tự, cm QM=PN=> tứ giác QMNP có QM=BN, QP=MN => Tứ giác MNPQ là hbh( có hai cặp cạnh đối bằng nhau)