K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 7 2017

đề bài thiếu

17 tháng 7 2017

ukm, đúng rùi mình viết thiếu 

Tìm GTLN hoặc GTNN :

B=(3x-y)^2+|x+y|-3

17 tháng 7 2017

Ta có:(3x-y)\(^2\)\(\ge\)\(\forall\) x

        |x+y|\(\ge\) 0 \(\forall\)i x,y

=>(3x-y)\(^2\)+|x+y|\(\ge\)0  \(\forall\) x,y

=>(3x-y)\(^2\)+|x+y|-3\(\ge\)-3 \(\forall\)x,y

Vậy GTNN của biểu thức B là -3

Dấu "=" xảy ra khi (3x-y)\(^2\)=|x+y|=0

Với (3x-y)\(^2\)=0=>3x-y=0=>3x=y=>x=y=0

Với |x+y|=0=>x+y=0=>x=x=0

Vậy biểu thức B đạt GTNN là -3 khi x=y=0

17 tháng 7 2017

Ta có:(2x\(^2\)+3) luôn lớn hơn hoặc bằng 0 với mọi x

       =>(2x\(^2\)+3)\(^2\)  -7 luôn lớn hơn hoặc bằng -7 với mọi x

Vậy GTNN của biểu thức C là 7

Dấu "=" xảy ra khi (2x\(^2\)+3)\(^2\)=0

                         =>2x\(^2\)+3  =0

                             2x\(^2\)      =-3

                              x\(^2\)       =\(\frac{-3}{2}\)

                              x            =\(\sqrt{\left(\frac{-3}{2}\right)^2}\)  

Vậy GTNN của biểu thức C là -7 khi x=\(\sqrt{\left(\frac{-3}{2}\right)^2}\)

17 tháng 7 2017

GTNN : ta co : (2x2+3)2 luôn lớn hơn hoặc bằng 0

               => để C đạt giá trị nhỏ nhất thì (2x2+3)2 =0

                  => C =0-7=-7

12 tháng 7 2018

\(\left(x-2\right)^3+\left(5-2x\right)^3=0\)

\(\Leftrightarrow\left(x-2+5-2x\right)\left(\left(x-2\right)^2-\left(x-2\right)\left(5-2x\right)+\left(5-2x\right)^2\right)=0\)

\(\Leftrightarrow\left(3-x\right)\left(x^2-4x+4-\left(5x-4x^2-10+4x\right)+25-20x+4x^2\right)=0\)

\(\Leftrightarrow\left(3-x\right)\left(x^2-4x+4-5x+4x^2+10-4x+25-20x+4x^2\right)=0\)

\(\Leftrightarrow\left(3-x\right)\left(9x^2-33x+39\right)=0\)

Phân tích  tiếp nhé

12 tháng 7 2018

Bạn ơi, mình chỉ làm đc đến đây rồi ko biết làm tiếp ntn đó

3 tháng 8 2016

x, y, z thuộc R nên đâu có những thứ này

\(\sqrt{\frac{x^2}{\left(y+z\right)^2}}=\frac{x}{y+z}\)

và \(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\ge\frac{3}{2}\)

2 tháng 8 2016

MinP=0 nha!
 

12 tháng 7 2018

Các bạn chỉ cần giải bài 2 thôi nhé! Bài 1 mình làm đc rồi!

5 tháng 9 2018

\(x^3+y^3+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+y\right)+z^3-3xyz\)

\(=\left(x+y+z\right)\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)

8 tháng 1 2017

Nhân phương trình thứ hai với -8 rồi cộng vào phương trình thứ nhất, ta được:

x4 - 8x3 +24x2 - 32x + 16 = y4 - 16y3 +96y- 256y + 256

<=> (x - 2)4 = (y - 2)4

<=>\(\orbr{\begin{cases}x-2=y-4\\x-2=4-y\end{cases}}\)

<=>\(\orbr{\begin{cases}x=y-2\\x=6-y\end{cases}}\)

Với x = y - 2, thay vào phương trình 1 ta được:

-8y3 + 24y- 32y + 16 = 240

<=> y3 - 3y+ 4y + 28 = 0

<=> (y + 2)(y- 5y + 14 ) = 0

<=> y = -2 ; x = -4

Với x = 6 - y, thay vào phương trình 1 ta được:

-24y3 + 216y- 864y + 1296 = 240

<=> y3 - 9y+ 36y - 44 = 0

<=> (y - 2)(y- 7y + 22 ) = 0

<=> y = 2 ; x = 4

Vậy hệ phương trình đã cho có hai nghiệm trên.

8 tháng 1 2017

Thấy giống AILABA quá

23 tháng 9 2017

1) \(\left|x-\frac{3}{5}\right|< \frac{1}{3}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{3}{5}< \frac{1}{3}\\x-\frac{3}{5}< -\frac{1}{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{1}{3}+\frac{3}{5}\\x< \frac{-1}{3}+\frac{3}{5}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x< \frac{5}{15}+\frac{9}{15}\\x< \frac{-5}{15}+\frac{9}{15}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{14}{15}\\x< \frac{4}{15}\end{cases}}\)

                vay \(\orbr{\begin{cases}x< \frac{14}{15}\\x< \frac{4}{15}\end{cases}}\)

2) \(\left|x+\frac{11}{2}\right|>\left|-5,5\right|\)

\(\left|x+\frac{11}{2}\right|>5,5\)

\(\Rightarrow\orbr{\begin{cases}x+\frac{11}{2}>\frac{11}{2}\\x+\frac{11}{2}>-\frac{11}{2}\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{11}{2}-\frac{11}{2}\\x>\frac{-11}{2}-\frac{11}{2}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x>0\\x>-11\end{cases}}\)

vay \(\orbr{\begin{cases}x>0\\x>-11\end{cases}}\)

3) \(\frac{2}{5}< \left|x-\frac{7}{5}\right|< \frac{3}{5}\)

\(\Rightarrow\left|x-\frac{7}{5}\right|>\frac{2}{5}\) va \(\left|x-\frac{7}{5}\right|< \frac{3}{5}\)

\(\Rightarrow\orbr{\begin{cases}x-\frac{7}{5}>\frac{2}{5}\\x-\frac{7}{5}>\frac{-2}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x>\frac{2}{5}+\frac{7}{5}\\x>\frac{-2}{5}+\frac{7}{5}\end{cases}}\)va \(\orbr{\begin{cases}x-\frac{7}{5}< \frac{3}{5}\\x-\frac{7}{5}< \frac{-3}{5}\end{cases}}\Rightarrow\orbr{\begin{cases}x< \frac{3}{5}+\frac{7}{5}\\x< \frac{-3}{5}+\frac{7}{5}\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x>\frac{9}{5}\\x>1\end{cases}}\)va \(\orbr{\begin{cases}x< 2\\x< \frac{4}{5}\end{cases}}\)

vay ....