K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) \({u_n} = \frac{{n + 1}}{n}= 1+ \frac{{1}}{n} > 1\).

b) \({u_n} = \frac{{n + 1}}{n}= 1+ \frac{{1}}{n} < 2\).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

Ta có: \({u_{n + 1}} = \frac{{\left( {n + 1} \right)a + 2}}{{\left( {n + 1} \right) + 1}} = \frac{{na + a + 2}}{{n + 1 + 1}} = \frac{{na + a + 2}}{{n + 2}}\)

Xét hiệu:

\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{na + a + 2}}{{n + 2}} - \frac{{na + 2}}{{n + 1}} = \frac{{\left( {na + a + 2} \right)\left( {n + 1} \right) - \left( {na + 2} \right)\left( {n + 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{\left( {{n^2}a + na + 2n + na + a + 2} \right) - \left( {{n^2}a + 2n + 2na + 4} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{{n^2}a + na + 2n + na + a + 2 - {n^2}a - 2n - 2na - 4}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{{a - 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\end{array}\)

a) Để \(\left( {{u_n}} \right)\) là dãy số tăng thì:

\({u_{n + 1}} - {u_n} > 0,\forall n \in {\mathbb{N}^*} \Leftrightarrow \frac{{a - 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0 \Leftrightarrow a - 2 > 0 \Leftrightarrow a > 2\)

b) Để \(\left( {{u_n}} \right)\) là dãy số giảm thì:

\({u_{n + 1}} - {u_n} < 0,\forall n \in {\mathbb{N}^*} \Leftrightarrow \frac{{a - 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} < 0 \Leftrightarrow a - 2 < 0 \Leftrightarrow a < 2\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Ta có:

\(\begin{array}{l}\frac{{{u_{n + 1}}}}{{{u_n}}} > 1\,\,\,\forall n \in {\mathbb{N}^*}\\ \Leftrightarrow {u_{n + 1}} > {u_n}\,\,\,\forall n \in {\mathbb{N}^*}\end{array}\)

=> Luôn đúng

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

• Ta có: \({u_{n + 1}} = \frac{{2\left( {n + 1} \right) - 1}}{{\left( {n + 1} \right) + 1}} = \frac{{2n + 2 - 1}}{{n + 1 + 1}} = \frac{{2n + 1}}{{n + 2}}\)

Xét hiệu:

\(\begin{array}{l}{u_{n + 1}} - {u_n} = \frac{{2n + 1}}{{n + 2}} - \frac{{2n - 1}}{{n + 1}} = \frac{{\left( {2n + 1} \right)\left( {n + 1} \right) - \left( {2n - 1} \right)\left( {n + 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{\left( {2{n^2} + n + 2n + 1} \right) - \left( {2{n^2} - n + 4n - 2} \right)}}{{\left( {n + 2} \right)\left( {n + 1} \right)}}\\ = \frac{{2{n^2} + n + 2n + 1 - 2{n^2} + n - 4n + 2}}{{\left( {n + 2} \right)\left( {n + 1} \right)}} = \frac{3}{{\left( {n + 2} \right)\left( {n + 1} \right)}} > 0,\forall n \in {\mathbb{N}^*}\end{array}\)

Vậy \({u_{n + 1}} - {u_n} > 0 \Leftrightarrow {u_{n + 1}} > {u_n}\). Vậy dãy số \(\left( {{u_n}} \right)\) là dãy số tăng.

• Ta có: \({u_n} = \frac{{2n - 1}}{{n + 1}} = \frac{{2\left( {n + 1} \right) - 3}}{{n + 1}} = 2 - \frac{3}{{n + 1}}\)

\(\forall n \in {\mathbb{N}^*}\) ta có:

\(n + 1 > 0 \Leftrightarrow \frac{3}{{n + 1}} > 0 \Leftrightarrow 2 - \frac{3}{{n + 1}} < 2 \Leftrightarrow {u_n} < 2\). Vậy \(\left( {{u_n}} \right)\) bị chặn trên.

\(n \ge 1 \Leftrightarrow n + 1 \ge 1 + 1 \Leftrightarrow n + 1 \ge 2 \Leftrightarrow \frac{3}{{n + 1}} \le \frac{3}{2} \Leftrightarrow 2 - \frac{3}{{n + 1}} \ge 2 - \frac{3}{2} \Leftrightarrow {u_n} \ge \frac{1}{2}\)

Vậy \(\left( {{u_n}} \right)\) bị chặn dưới.

Ta thấy dãy số \(\left( {{u_n}} \right)\) bị chặn trên và bị chặn dưới nên dãy số \(\left( {{u_n}} \right)\) bị chặn.

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) \(\begin{array}{l}\lim {u_n} = \lim \left( {3 + \frac{1}{n}} \right) = \lim 3 + \lim \frac{1}{n} = 3 + 0 = 3\\\lim {v_n} = \lim \left( {5 - \frac{2}{{{n^2}}}} \right) = \lim 5 - \lim \frac{2}{{{n^2}}} = 5 - 0 = 5\end{array}\)

b)

\(\begin{array}{l}\lim \left( {{u_n} + {v_n}} \right) = \lim {u_n} + \lim {v_n} = 3 + 5 = 8\\\lim \left( {{u_n} - {v_n}} \right) = \lim {u_n} - \lim {v_n} = 3 - 5 =  - 2\\\lim \left( {{u_n}.{v_n}} \right) = \lim {u_n}.\lim {v_n} = 3.5 = 15\\\lim \frac{{{u_n}}}{{{v_n}}} = \frac{{\lim {u_n}}}{{\lim {v_n}}} = \frac{3}{5}\end{array}\)

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

a) Vì \(\lim \left( {8 + \frac{1}{n} - 8} \right) = \lim \frac{1}{n} = 0\) nên \(\lim {u_n} = 8.\)

Vì \(\lim \left( {4 - \frac{2}{n} - 4} \right) = \lim \frac{{ - 2}}{n} = 0\) nên \(\lim {v_n} = 4.\)

b) \({u_n} + {v_n} = 8 + \frac{1}{n} + 4 - \frac{2}{n} = 12 - \frac{1}{n}\)

Vì \(\lim \left( {12 - \frac{1}{n} - 12} \right) = \lim \frac{{ - 1}}{n} = 0\) nên \(\lim \left( {{u_n} + {v_n}} \right) = 12.\)

Mà \(\lim {u_n} + \lim {v_n} = 12\)

Do đó \(\lim \left( {{u_n} + {v_n}} \right) = \lim {u_n} + \lim {v_n}.\)

c) \({u_n}.{v_n} = \left( {8 + \frac{1}{n}} \right).\left( {4 - \frac{2}{n}} \right) = 32 - \frac{{14}}{n} - \frac{2}{{{n^2}}}\)

Sử dụng kết quả của ý b ta có \(\lim \left( {32 - \frac{{14}}{n} - \frac{2}{{{n^2}}}} \right) = \lim 32 - \lim \frac{{14}}{n} - \lim \frac{2}{{{n^2}}} = 32\)

Mà \(\left( {\lim {u_n}} \right).\left( {\lim {v_n}} \right) = 32\)

Do đó \(\lim \left( {{u_n}.{v_n}} \right) = \left( {\lim {u_n}} \right).\left( {\lim {v_n}} \right).\)

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

Đáp án đúng là: D

Ta có: un+1 = 2n+1+1 = 2n+2

Xét hiệu un+1 – un = 2n+2 – 2n = 3.2n > 0 với mọi n ∈ ℕ*

Vậy dãy số đã cho là dãy số tăng.

26 tháng 8 2023

Ta có:

\(u_1=\dfrac{1}{3^1-1}=\dfrac{1}{2}\\ u_2=\dfrac{2}{3^2-1}=\dfrac{1}{4}\\ u_3=\dfrac{3}{3^3-1}=\dfrac{3}{26}\)

\(\Rightarrow B\)

 

Chọn B

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

\(\begin{array}{l}{u_1} = \frac{1}{{1.2}} = \frac{1}{2}\\{u_2} = \frac{1}{{1.2}} + \frac{1}{{2.3}} = \frac{2}{3}\\{u_3} = \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} = \frac{3}{4}\\{u_n} = \frac{n}{{n + 1}}\end{array}\)