K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Vì ABCD là hình bình hành nên \(\left\{ \begin{array}{l}AD//\;BC\\AD = BC\end{array} \right.\), hay \(\overrightarrow {AD}  = \overrightarrow {BC} \).

Do đó \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \).

24 tháng 9 2023

Tham khảo:

Ta có: \( \overrightarrow {AB}  + \overrightarrow {AD}  =  \overrightarrow {AC} \) (do ABCD là hình bình hành)

\( \Rightarrow \overrightarrow {BM}  = \overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

\( \Rightarrow \) Tứ giác ABMC là hình bình hành.

\( \Rightarrow  \overrightarrow {DC} =\overrightarrow {AB}  = \overrightarrow {CM} \). 

\( \Rightarrow C\) là trung điểm DM.

Vậy M thuộc DC sao cho C là trung điểm DM.

Chú ý khi giải

+) Tứ giác ABCD là hình bình hành \( \Leftrightarrow \overrightarrow {AD}  = \overrightarrow {BC} \)

+) ABCD là hình bình hành thì \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Dễ thấy:

\(AD = BC\) nhưng \(AD\) và \(BC\) không song song với nhau. Do đó hai vectơ \(\overrightarrow {AD} \) và \(\overrightarrow {BC} \) không bằng nhau.

\(CD > AB\) do đó hai vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {CD} \) không bằng nhau.

\(AC\) và \(BD\) không song song với nhau. Do đó hai vectơ \(\overrightarrow {AC} \) và \(\overrightarrow {BD} \) không bằng nhau.

24 tháng 9 2023

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Ta có: \(AB = CD \Rightarrow \left| {\overrightarrow {AB} } \right| = \left| {\overrightarrow {CD} } \right|\)

\(AB//CD\) và \(\overrightarrow {AB} \), \(\overrightarrow {DC} \) có hướng từ trái sang phải

Suy ra \(\overrightarrow {AB} \) và \(\overrightarrow {DC} \) cùng hướng

b) Ta có: \(AD = CB \Rightarrow \left| {\overrightarrow {AD} } \right| = \left| {\overrightarrow {CB} } \right|\)

\(AD//CB\) và \(\overrightarrow {AD} \)có hướng từ trên xuống dưới, \(\overrightarrow {CB} \) có hướng từ dưới lên trên. Suy ra \(\overrightarrow {AD} \) và \(\overrightarrow {CB} \) ngược hướng

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

a) Ta có: \(\left\{ \begin{array}{l}AD//BC\\AD = BC\end{array} \right.\) (do tứ giác ABCD là hình bình hành)

\( \Rightarrow \overrightarrow {AD}  = \overrightarrow {BC} \)

b) Ta có: \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {BC}  = \overrightarrow {AC} \)

19 tháng 10 2016

2

24 tháng 9 2023

Tham khảo:

a)  M thuộc cạnh BC nên vectơ \(\overrightarrow {MB} \) và \(\overrightarrow {MC} \) ngược hướng với nhau.

Lại có: MB = 3 MC \( \Rightarrow \overrightarrow {MB}  =  - 3.\overrightarrow {MC} \)

b) Ta có: \(\overrightarrow {AM}  = \overrightarrow {AB}  + \overrightarrow {BM} \)

Mà \(BM = \dfrac{3}{4}BC\) nên \(\overrightarrow {BM}  = \dfrac{3}{4}\overrightarrow {BC} \)

\( \Rightarrow \overrightarrow {AM}  = \overrightarrow {AB}  + \dfrac{3}{4}\overrightarrow {BC} \)

Lại có: \(\overrightarrow {BC}  = \overrightarrow {AC}  - \overrightarrow {AB} \) (quy tắc hiệu)

\( \Rightarrow \overrightarrow {AM}  = \overrightarrow {AB}  + \dfrac{3}{4}\left( {\overrightarrow {AC}  - \overrightarrow {AB} } \right) = \dfrac{1}{4}.\overrightarrow {AB}  + \dfrac{3}{4}.\overrightarrow {AC} \)

Vậy \(\overrightarrow {AM}  = \dfrac{1}{4}.\overrightarrow {AB}  + \dfrac{3}{4}.\overrightarrow {AC} \)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) Ta có: \(\overrightarrow {CE}  = \overrightarrow {AN}  \Rightarrow CE//AN\) và \(CE = AN = ND = BM = MC\)

Suy ra \(\overrightarrow {MC}  = \overrightarrow {CE} \)

+) \(\overrightarrow {NC}  + \overrightarrow {MC}  = \overrightarrow {NC}  + \overrightarrow {CE}  = \overrightarrow {NE} \)

+) ABCD là hình bình hành nên \(\overrightarrow {CD}  = \overrightarrow {BA} \)

\(\overrightarrow {AM}  + \overrightarrow {CD}  = \overrightarrow {AM}  + \overrightarrow {BA}  = \overrightarrow {BM} \)

+) Ta có \(\overrightarrow {MC}  = \overrightarrow {AN}  \Rightarrow AMCN\) là hình bình hành nên \(\overrightarrow {NC}  = \overrightarrow {AM} \)

\(\overrightarrow {AD}  + \overrightarrow {NC}  = \overrightarrow {AD}  + \overrightarrow {AM}  = \overrightarrow {AE} \) (vì AMED là hình bình hành)

b) Ta có:

+) \(\overrightarrow {NC}  - \overrightarrow {MC}  = \overrightarrow {NC}  + \overrightarrow {CM}  = \overrightarrow {NM} \)

+) \(\overrightarrow {AC}  - \overrightarrow {BC}  = \overrightarrow {AC}  + \overrightarrow {CB}  = \overrightarrow {AB} \)

+) \(\overrightarrow {AB}  - \overrightarrow {ME}  = \overrightarrow {AB}  - \overrightarrow {AD}  = \overrightarrow {AB}  + \overrightarrow {DA}  = \overrightarrow {DB} \)

c) Ta có:

\(\overrightarrow {AM}  + \overrightarrow {AN}  = \overrightarrow {AM}  + \overrightarrow {MC}  = \overrightarrow {AC} \)

Áp dụng quy tắc hình bình hành vào hình bình hành ABCD ta có

\(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Từ đó suy ra \(\overrightarrow {AM}  + \overrightarrow {AN}  = \overrightarrow {AB}  + \overrightarrow {AD} \) (đpcm)

NV
18 tháng 8 2021

A sai

\(\overrightarrow{AB}-\overrightarrow{AD}=\overrightarrow{AB}+\overrightarrow{DA}=\overrightarrow{DA}+\overrightarrow{AB}=\overrightarrow{DB}=-\overrightarrow{BD}\) mới đúng

19 tháng 5 2017

Vectơ

\(\overrightarrow{EH}=\overrightarrow{AD},\overrightarrow{FG}=\overrightarrow{AD}\Rightarrow\overrightarrow{EH}=\overrightarrow{FG}\)

=> Tứ giác FEHG là hình bình hành

=> \(\overrightarrow{GH}=\overrightarrow{FE}\) (1)

Ta có \(\overrightarrow{DC}=\overrightarrow{AB},\overrightarrow{AB}=\overrightarrow{FE}\)

=> \(\overrightarrow{DC}=\overrightarrow{FE}\) (2)

Từ (1) và (2) ta có \(\overrightarrow{GH}=\overrightarrow{DC}\)

Vậy tứ giác GHCD là hình bình hành.