Cho tam giác ABC, từ 1 điểm M bất kì nằm trên cạnh BC kẻ các đường thẳng MD song song AB,ME song song AC ( D thuộc AC, E thuộc AB)
a) So sánh góc BAC và góc EMD.
b) Chứng minh góc A + góc B + góc C = 180 độ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình ko biết vẽ hình trên này bạn tự vẽ đi
ta có:
ME//AD suy ra \(\hept{\begin{cases}DAF=AFE\left(soletrong\right)\\DAC=AEF\left(dongvi\right)\end{cases}}\) mà \(DAC=DAF\) vì AD là phân giác góc A
\(\Rightarrow AEF=AFE\)
Do Az là phân giác CAxˆ→CAzˆ=xAzˆ(1)CAx^→CAz^=xAz^(1)
Do Az // BC →ABCˆ=xAzˆ→ABC^=xAz^ ( 2 góc đồng vị ) (2)
và ACBˆ=CAzˆACB^=CAz^ ( 2 góc so le trong ) (3)
Từ (1); (2) và (3) \Rightarrow ABCˆ=ACBˆABC^=ACB^ ( đpcm )
a: Xét ΔAMB và ΔAMC co
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
=>góc MAB=góc MAC
Xét ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF và ME=MF
b: Xét ΔABC có AE/AB=AF/AC
nên EF//BC
c: IN//EM
=>NI/ME=BN/BM
=>NI/MF=BN/CM
=>NI/BN=MF/CM
FM//NK
=>MF/NK=CM/CN
=>MF/CM=NK/CN
=>NK/CN=NI/BN=(NI+NK)/BC ko đổi