K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(\widehat{BCD}+\widehat{BCN}=180^0\)(hai góc kề bù)

\(\Leftrightarrow\widehat{BCN}=180^0-\widehat{BCD}=180^0-90^0\)

\(\Leftrightarrow\widehat{BCN}=90^0\)

hay \(\widehat{MCN}=90^0\)

Xét tứ giác MCNF có 

\(\widehat{MCN}=90^0\)(cmt)

\(\widehat{FMC}=90^0\)(FM⊥BC)

\(\widehat{FNC}=90^0\)(FN⊥DC)

Do đó: MCNF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: ABCD là hình chữ nhật(gt)

nên Hai đường chéo AC và BD cắt nhau tại trung điểm của mỗi đường và bằng nhau(Định lí hình chữ nhật)

mà AC cắt BD tại O(gt)

nên O là trung điểm chung của AC và BD; AC=BD

Xét ΔACF có 

O là trung điểm của AC(cmt)

E là trung điểm của AF(gt)

Do đó: OE là đường trung bình của ΔACF(Định nghĩa đường trung bình của tam giác)

⇒OE//CF và \(OE=\dfrac{CF}{2}\)(Định lí 2 về đường trung bình của tam giác)

hay CF//BD(đpcm)

b: góc FAK=góc FCK=90 độ

=>ACFK nội tiếp

=>góc CAF=góc CKF

a: góc AKF=180 độ-góc ACF=180 độ-90 độ-45 độ=45 độ

=>ΔAKF vuông cân tại A

20 tháng 7 2016

E là điểm nào vậy bạn?

7 tháng 7 2019

a. AE = AF: 
Δ ABE = Δ ADF vì: 
AB = AD ( cạnh hình vuông) 
\(\widehat{DAF}=\widehat{BAE}\)( cùng phụ với DAE^) 
=> AE = AF 

b. Tứ gaíc EGFK là hình thoi 
EG // AB và AB // FK => EG // FK (*)

=>  \(\widehat{GEF}=\widehat{KFE}\)(1) ( so le trong) 
cm câu a) có AF = AE => trung tuyến AI củng là đường trung trực của EF => AI \(\perp\)EF 
theo giả thiết: IE = IF (2) 
(1) và (2) => Δ IKF = Δ IGE => FK = EG (**) 
(*) và (**) => EGFK là hình bình hành 
vì AI là trung trực của EF => EG = FG 
vậy hình bình hành EGFK là hình thoi. 

c. tam giác FIK đồng dạng tam giác FCE 
Δ FIK ~ Δ FEC vì: 
\(\widehat{F}\)chung 
\(\widehat{KIF}=\widehat{ECF}\) = 1v 

d. EK = BE + DK và khi E chuyển động trên BC thì chu vi tam giác ECK không đổi 
gọi cạnh hình vuông là a, ta có: 
CV = EC + CK + EK = (BC - BE) + (CD - DK) + (BE + DK) = BC + CD = 2a không đổi

21 tháng 9 2016

a)Tứ giác CMFN là hình chữ nhật  vì có 3 góc vuông