hình thang cân ABCD có BD là tia phân giác của góc D ; DB vuông góc BC.Biết AB = 4cm.Tính chu vi hình thang?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AD = BC = 3 (cm) (tính chất hình thang cân)
∠ (ABD) = ∠ (BDC) (so le trong)
∠ (ADB) = ∠ (BDC) ( do DB là tia phân giác của góc D )
⇒ ∠ (ABD) = ∠ (ADB)
⇒ ∆ ABD cân tại A
⇒ AB = AD = 3 (cm)
∆ BDC vuông tại B
∠ (BDC) + ∠ C = 90 0
∠ (ADC) = ∠ C (gt)
Mà ∠ (BDC) = 1/2 ∠ (ADC) nên ∠ (BDC) = 1/2 ∠ C
∠ C + 1/2 ∠ C = 90 0 ⇒ ∠ C = 60 0
Từ B kẻ đường thẳng song song AD cắt CD tại E.
Hình thang ABED có hai cạnh bên song song nên AB = DE và AD = BE
⇒ DE = 3 (cm), BE = 3 (cm)
∠ (BEC) = ∠ (ADC) (đồng vị)
Suy ra: ∠ (BEC) = ∠ C
⇒ ∆ BEC cân tại B có ∠ C = 60 0
⇒ ∆ BEC đều
⇒ EC = BC = 3 (cm)
CD = CE + ED = 3 + 3 = 6(cm)
Chu vi hình thang ABCD bằng:
AB + BC + CD + DA = 3 + 3 + 6 + 3 = 15 (cm)
Xét ▲ADC và ▲BCD có:
AD = BC ( gt )
AC = BD ( gt )
DC chung
=> ▲ADC = ▲BCD ( c.c.c )
=> góc D = góc C ( c.t.ứ )
cmtt ta đc góc A = Góc B
Mà Góc D + góc A + Góc C + Góc B=360o
=> 2GócA+2GócD=360o
-> gócA+gócD=180o ( 2 góc trong cùng phía )=>AB//DC -> ABCD là hình thang
Vì góc D = góc C (cmt) nên ABCD là hình thang cân
ABCD là hình thang cân (gt) nên AB song song với CD,AD=BC=6cm và góc C=góc ADC
DB la tia p/g của góc ADC(gt) nên góc ADB=góc BDC= 1/2 góc ADC =1/2 góc C
AB song song với CD (cmt) suy ra: góc ABD=góc BDC
Tam giác ABD có: góc ABD=góc ADB(=góc BDC)
Do đó tam giác ABD cân tại A (DHNB) suy ra: AB=AD=6cm
Tam giác DBC vuông tại B nên góc BDC+góc C=90 độ
Hay 1/2 góc C+ góc C=90 độ
3/2 góc C =90 độ
C=60 độ.Sau đó tính được góc BDC=30 độ
Tam giác BDC vuông tại B có góc BDC=30 độ vì thế BC=1/2 DC
Do đó:DC=2BC=2x6=12(cm)
Chu vi hình thang ABCD là:
AB+AD+BC+CD=6+6+6+12=30(cm)
Vậy chu vi hình thang ABCD là 30 cm
Ta có \(\widehat{D_1}=\widehat{D_2}\left(t/c.phân.giác\right)\)
Mà \(\widehat{D_2}=\widehat{B_1}\left(so.le.trong.vì.AB//CD\right)\)
\(\Rightarrow\widehat{D_1}=\widehat{B_1}\Rightarrow\Delta ADB.cân.tại.B\)
\(\Rightarrow AD=AB=3\left(cm\right)\)
Ta có \(\widehat{ADC}=\widehat{BCD}=60^0\left(hthang.cân.ABCD\right)\)
\(\Rightarrow\widehat{D_1}=\widehat{D_2}=\dfrac{1}{2}\widehat{ADC}=30^0\left(t/c.phân.giác\right)\)
Ta có \(\widehat{BDC}+\widehat{D_2}+\widehat{BCD}=180^0\Rightarrow\widehat{BDC}=180^0-30^0-60^0=90^0\)
Do đó \(\Delta BCD\) vuông tại B
\(\Rightarrow CD^2=BD^2+BC^2\left(pytago\right)\\ \Rightarrow CD^2=BD^2+AD^2\left(t/c.hthang.cân\right)\\ \Rightarrow CD^2=3^2+4^2=25\\ \Rightarrow CD=5\left(cm\right)\)
Vì EF là đtb hình thang cân ABCD nên \(EF=\dfrac{AB+CD}{2}=\dfrac{5+3}{2}=4\left(cm\right)\)