Có bao nhiêu số gồm sáu chữ số đôi một khác nhau được tạo thành từ các chữ số 1, 2, 3, 4, 5, 6?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Ta xem 3 chữ số 1; 2; 3 đứng cạnh nhau là một phần tử X.
Chọn ra 3 chữ số còn lại có C 4 3 cách chọn.
Xếp phần tử X và 3 chữ số vừa chọn ta có: 4! Cách.
Các chữ số 1;2;3 trong X có thể hoán vị cho nhau có: 3! Cách.
Vậy có tất cả C 4 3 . 4 ! . 3 ! = 576 (số)
Chọn C
Số cách chọn 3 số bất kì từ tập {4;5;6;7} là C 3 4
Do 1, 2, 3 luôn đứng cạnh nhau nên ta xem chúng như một phần tử.
Số các số tự nhiên có sáu chữ số đôi một khác nhau trong đó 1, 2, 3 luôn đứng cạnh nhau là 4!. C 3 4 .3! = 576 số.
Gọi các số thỏa mãn đề là \(\overline{abcdef}\) (đôi một khác nhau)
- Số 7 có thể ở cả 6 vị trí.
+ Nếu a=7 => Số cách chọn các số còn lại: 9.8.7.6.5=15120 (cách)
+ Nếu a\(\ne\) 7 => Số cách chọn các số còn lại: 8.9.8.7.6.5=120960(cách)
=> Số số tự nhiên thỏa mãn: 15120+120960=136080(số)
Gọi chữ số cần lập là \(\overline{abcdef}\)
TH1: có mặt chữ số 0
Chọn 4 chữ số còn lại (ngoài 2 số 0 và 7): \(C_6^4=15\) cách
Hoán vị 6 chữ số: \(6!-5!=600\) cách
\(\Rightarrow15.600=9000\) số
TH2: không có mặt chữ số 0
Chọn 5 chữ số còn lại: \(C_6^5=6\) cách
Hoán vị 6 chữ số: \(6!=720\) cách
\(\Rightarrow6.720=4320\) số
Vậy có: \(9000+4320=13320\) số thỏa mãn
Đáp án C
Số các số tự nhiên thỏa mãn yêu cầu bài toán là: A 6 4 = 360 số
Đáp án C
Số các số tự nhiên thỏa mãn yêu cầu bài toán là: A 6 4 = 360 số
Đáp án C
Chọn số tự nhiên gồm 4 chữ số trong 6 chữ số có A 6 4 = 360 cách chọn
Một số có 6 chữ số đôi một khác nhau được tạo ra từ sáu chữ số 1, 2, 3, 4, 5, 6 là một hoán vị của sáu chữ số này.
Vậy số các số phải tìm là: \({P_6} = 6! = 720\)( số )