K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: BC=25cm

b: Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{20}{8}=2.5\)

Do đó: AD=7,5cm; CD=12,5(cm)

b: \(AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

\(HB=\dfrac{15^2}{25}=9\left(cm\right)\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc ABD=góc DBC

nên góc ADI=góc AID

hay ΔAID cân tại A

a: BC=25cm

Xét ΔBAC có BD là phân giác

nên AD/AB=CD/BC

=>AD/3=CD/5

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{20}{8}=2.5\)

Do đó: AD=7,5cm; CD=12,5(cm)

b: \(AH=\dfrac{15\cdot20}{25}=12\left(cm\right)\)

\(HB=\dfrac{15^2}{25}=9\left(cm\right)\)

c: góc AID=góc BIH=90 độ-góc DBC

góc ADI=90 độ-góc ABD

mà góc ABD=góc DBC

nên góc ADI=góc AID

hay ΔAID cân tại A

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó:ΔABC\(\sim\)ΔHBA

\(BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)

\(BH=\dfrac{AB^2}{BC}=3.6\left(cm\right)\)

b: Xét ΔAHC vuông tại H có HN là đường cao

nên \(HN^2=NA\cdot NC\)

15 tháng 10 2021

b: Xét ΔAHB vuông tại H có HD là đường cao ứng với cạnh huyền AB

nên \(AD\cdot AB=AH^2\left(1\right)\)

Xét ΔAHC vuông tại H có HE là đường cao ứng với cạnh huyền AC

nên \(AE\cdot AC=AH^2\left(2\right)\)

Từ (1) và (2) suy ra \(AD\cdot AB=AE\cdot AC\)

hay \(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Xét ΔADE vuông tại A và ΔACB vuông tại A có 

\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\)

Do đó: ΔADE\(\sim\)ΔACB

Suy ra: \(\widehat{ADE}=\widehat{ACB}\)

a: \(BC=\sqrt{21^2+28^2}=35\left(cm\right)\)

AD là phân giác

=>DB/AB=DC/AC
=>DB/3=DC/4=(DB+DC)/(3+4)=35/7=5

=>DB=15cm; DC=20cm

b: Xét ΔCAB có DE//AB

nên DE/AB=CD/CB=CE/CA

=>CE/28=DE/21=20/35=4/7

=>CE=16cm; DE=12cm

bạn ghi sai đầu bài hay sao í 

4 tháng 5 2021

Vẽ đường phân giác AH là sai, còn lại thì đúng hết

30 tháng 3 2021

A B C H D

30 tháng 3 2021

a)

Xét \(\Delta ABC\) và \(\Delta HBA\) có:

           \(\widehat{B}:chung\)

      \(\widehat{BAC}=\widehat{BHA}\left(=90^o\right)\)

\(\Rightarrow\Delta ABC\sim\Delta HBA\left(g.g\right)\)           \(\left(ĐPCM\right)\)

a: AC=căn 10^2-6^2=8cm

AB<AC<BC

=>góc C<góc B<góc A

b: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

góc ABD=góc EBD

=>ΔBAD=ΔBED

=>BA=BE và DA=DE

=>BD là trung trực của AE

a: \(AC=5\sqrt{3}\left(cm\right)\)

b: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

Suy ra: BA=BE

hay B nằm trên đường trung trực của AE(1)

Ta có: ΔABD=ΔEBD

nên DA=DE
nên D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD⊥AE