tìm parabol y=ax2+bx+3 biết rằng parabol đó có trục đối xứng là x=-2 và đỉnh của parabol có tung độ bằng 19.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Parabol y = ax2 + bx + 2 có trục đối xứng x = –3/2
⇒ –b/2a = –3/2 ⇒ b = 3a (1)
+ Parabol y = ax2 + bx + 2 đi qua điểm A(3; –4)
⇒ –4 = a.32 + b.3 + 2 ⇒ 9a + 3b = –6 (2).
Thay b = 3a ở (1) vào biểu thức (2) ta được:
9a + 3.3a = –6 ⇒ 18a = –6 ⇒ a = –1/3 ⇒ b = –1.
Vậy parabol cần tìm là y = –1/3x2 – x + 2.
a) Thay x=1 và y=-2 vào (P), ta được:
\(a\cdot1^2-4\cdot1+c=-2\)
\(\Leftrightarrow a-4+c=-2\)
hay a+c=-2+4=2
Thay x=2 và y=3 vào (P), ta được:
\(a\cdot2^2-4\cdot2+c=3\)
\(\Leftrightarrow4a-8+c=3\)
hay 4a+c=11
Ta có: \(\left\{{}\begin{matrix}a+c=2\\4a+c=11\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-3a=-9\\a+c=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=3\\c=2-a=2-3=-1\end{matrix}\right.\)
Vậy: (P): \(y=3x^2-4x-1\)
+ Parabol y = ax2 + bx + 2 đi qua điểm B(–1 ; 6)
⇒ 6 = a.( –1)2 + b.( –1) + 2 ⇒ a = b + 4 (1)
+ Parabol y = ax2 + bx + 2 có tung độ của đỉnh là –1/4
Thay (1) vào (2) ta được: b2 = 9.(b + 4) ⇔ b2 – 9b – 36 = 0.
Phương trình có hai nghiệm b = 12 hoặc b = –3.
Với b = 12 thì a = 16.
Với b = –3 thì a = 1.
Vậy có hai parabol thỏa mãn là y = 16x2 + 12b + 2 và y = x2 – 3x + 2.
Thay \(x=0;y=3\Leftrightarrow c=3\Leftrightarrow\left(P\right):y=ax^2-x+3\)
Vì (P) có trục đx là \(\dfrac{1}{2}\Leftrightarrow-\dfrac{\left(-1\right)}{a}=\dfrac{1}{2}\Leftrightarrow a=2\)
Vậy \(\left(P\right):y=2x^2-x+3\)
Đỉnh của parabol là \(\frac{-\Delta}{4a}\) ta có
\(\left\{{}\begin{matrix}\frac{-\Delta}{4a}=-25\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\16a-4b+c=0\\36a+6b+c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}b^2-4ac=100a\\24a+c=0\\2a+b=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4a^2-4ac=100a\\24a+c=0\\b=-2a\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a-c=25\\24a+c=0\\b=-2a\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-2\\c=-24\end{matrix}\right.\)
\(\Rightarrow y=x^2-2x-24\)
Trục đối xứng là x=-4
=>\(\dfrac{-\left(-6\right)}{2a}=-4\)
=>\(\dfrac{-6}{2a}=4\)
=>\(2a=-\dfrac{3}{2}\)
=>\(a=-\dfrac{3}{4}\)
=>(P): \(y=-\dfrac{3}{4}x^2-6x+c\)
Phương trình hoành độ giao điểm là:
\(-\dfrac{3}{4}x^2-6x+c=0\)
\(\text{Δ}=\left(-6\right)^2-4\cdot\dfrac{-3}{4}\cdot c\)
\(=36+3c\)
Để (P) cắt trục Ox tại 2 điểm phân biệt thì Δ>0
=>3c+36>0
=>3c>-36
=>c>-12
Theo Vi-et, ta có: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=\dfrac{6}{-\dfrac{3}{4}}=6\cdot\dfrac{-4}{3}=-8\\x_1\cdot x_2=\dfrac{c}{a}=c:\dfrac{-3}{4}=-\dfrac{4}{3}c\end{matrix}\right.\)
Để (P) cắt trục Ox tại 2 điểm có độ dài bằng 4 thì \(\left|x_1-x_2\right|=4\)
=>\(\sqrt{\left(x_1-x_2\right)^2}=4\)
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=4\)
=>\(\sqrt{\left(-8\right)^2-4\cdot\dfrac{-4c}{3}}=4\)
=>\(\sqrt{64+\dfrac{16c}{3}}=4\)
=>\(\dfrac{16}{3}\cdot c+64=16\)
=>\(\dfrac{16}{3}\cdot c=-48\)
=>\(c=-48:\dfrac{16}{3}=-48\cdot\dfrac{3}{16}=-9\left(nhận\right)\)
Parabol y = ax2 + bx + c có:
+ Tọa độ đỉnh D là:
+ Phương trình trục đối xứng là:
Lời giải:
Theo bài ra thì tọa độ đỉnh của parabol là $(-2,19)$
Từ hàm $y=ax^2+bx+3=a(x+\frac{b}{2a})^2+3-\frac{b^2}{4a}$ ta có tọa độ đỉnh của parabol là:
$(\frac{-b}{2a}, 3-\frac{b^2}{4a})$
$\Rightarrow \frac{-b}{2a}=-2; 3-\frac{b^2}{4a}=19$
$\Rightarrow a=-4; b=-16$