K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 12 2023

Gọi K là trung điểm của BD

Xét ΔDBH có

K,I lần lượt là trung điểm của DB,DH

=>KI là đường trung bình của ΔDBH

=>KI//BH

Ta có: KI//BH

AH\(\perp\)BH

Do đó: KI\(\perp\)AH

Xét ΔAKH có

KI,HD là các đường cao

KI cắt HD tại I

Do đó: I là trực tâm

=>AI\(\perp\)HK

Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của BC

Xét ΔBDC có

K,H lần lượt là trung điểm của BD,BC

=>KH là đường trung bình

=>KH//DC

Ta có: KH//DC
AI\(\perp\)KH

Do đó: AI\(\perp\)DC

Ta có : DM = MC 

           DI = IH 

=> MI là đường trung bình của tam giác vuông MCH

=> MI // HC

Do HC vuông vs AH => MI vuông vs AH ( đpcm )

11 tháng 9 2016

a.xét dhc ta có: mi là đtb --> mi // hc

mà hc vuông góc ah

nên mi vuông góc ah

b.Ta có ah là dg cao--> ah là t/tuyến-> bh=hc

xét dbc có hm là dtb--> hm// bd

trong ahm có hd vuông góc am

mi vuông góc ah

mà am và mi cắt tại i nên i là trực tâm--> ai vuông góc hm mà hm//bd 

nên AI vuông góc bd

10 tháng 11 2017

Bài 1:Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.
a,CM tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB
b,Tam giác DMC là tam giác gì?Vì sao?
c,CM DM + AM < DC
Bài 2:Cho tam giác ABC có góc A=90* và đường phân giác BH(H thuộc AC).Kẻ HM vuông góc với BC(M thuộc BC).Gọi N là giao điểm của AB và MH.CM:
a, Tam giác ABGH bằng tam giác MBH.
b, BH là đường trung trực của đoạn thẳng AH
c, AM // CN
d, BH vuông góc với CN
Bài 3:Cho tam giác ABC vuông góc tại C có góc A = 60* và đường phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc với BK tại K(K thuộc AB).Kẻ BD vuông góc với AE tại D(D thuộc AE).CM:
a, Tam giác ACE bằng tam giác AKE
b, BE là đường trung trực của đoạn thẳng CK
c, KA=KB
d, EB>EC
Bài 4:Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E.Kẻ EH vuông góc BC tại H(H thuộc BC).CM:
a, Tam giác ABE bằng tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH
c, EC > AE
Bài 5:Cho tam giác ABC vuông tại A có đường cao AH
1,Biết AH=4cm,HB=2cm,Hc=8cm:
a,Tính độ dài cạnh AB,AC
b,CM góc B > góc C
2,Giả sử khoảng cách từ điểm A đến đường thẳng chứa cạnh BC là không đổi.Tam giác ABC cần thêm điều kiện gì để khoảng cách BC là nhỏ nhất.
Bài 6:Cho tam giác ABC vuông tại A có đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.
a,CM góc BAD= góc BDA
b,CM góc HAD+góc BDA=góc DAC+góc DAB.Từ đó suy ra AD là tia phân giác của góc HAC
c,Vẽ DK vuông góc AC.Cm AK=AH
d,Cm AB+AC<BC+AH
Bài 7:Cho tam giac ABC vuông tại C.Trên cạnh AB lấy điểm D sao cho AD = AC.kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a,CM AE là phân giác \{CAB}
b,CM AE là trung trực của CD
c,So sánh CD và BC
d,M là trung điểm của BC,DM cắt BI tại G,CG cắt DB tại K.CM K là trung điểm của DB
Bài 8:Cho tam giác ABC có BC=2AB.Gọi M là trung điểm của BC,N là trung điểm của BM.Trên tia đối của NA lấy điểm E sao cho AN=EN.CM:
a,Tam giác NAB=Tam giác NEM
b,Tam giác MAB là tam giác cân
c,M là trọng tâm của Tam giác AEC
d,AB>\frac{2}{3}AN

14 tháng 4 2022

a) Vì ∆ABC cân tại A có AH là đường cao nên AH cũng là đường trung tuyến

Suy ra BH=CH

Xét ∆AHB và ∆AHC có

AH là cạnh chung

BH=CH (cmt)

AB=AC (∆ABC cân tại A)

Do đó ∆AHB=∆AHC

Xét ∆AMH ta có

AD vuông góc với MH (HD vuông góc AB)

Suy ra AD là đường cao của ∆AMH (1)

DH=DM (gt)

Nên AD là đường trung bình của ∆AMH (2)

Từ (1) và (2) suy ra ∆AMH cân tại A

Suy ra AM=AH

a: ΔABC cân tại A có AH là đường cao

nên H là trung điểm của CB

Xét ΔCDB có CH/CB=CJ/CD

nên HJ//BD 

=>HJ/BD=CH/CB=1/2

=>HJ=1/2BD

b: Xét ΔDHC có DJ/DC=DI/DH

nên JI//HC

=>JI vuông góc AH

Xét ΔAHJ có

HD,JI là đường cao

HD cắt JI tại I

=>I là trực tâm

=>AI vuông góc BD