1.Cho 3 số dương a,b,c. Chứng minh rằng:
\(\dfrac{19b^3-a^3}{ab+5b^2}+\dfrac{19c^3-b^3}{bc+5c^2}+\dfrac{19a^3-c^3}{ac+5a^2}\)≤ 3(a+b+c)
2.cho a,b,c dương thỏa man: a2+b2+c2=1
Tìm giá trị nhỏ nhất của biểu thức: P=\(\dfrac{bc}{a}+\dfrac{ac}{b}+\dfrac{ab}{c}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bị lỗi hiển thị hay sao ấy, mình không nhìn thấy BĐT/ đẳng thức bạn muốn chứng minh.
Áp dụng bổ đề:
\(x^3+y^3\ge xy\left(x+y\right)\)
Ta có:
\(\dfrac{19b^3-a^3}{ab+5b^2}+\dfrac{19c^3-b^3}{bc+5c^2}+\dfrac{19a^3-c^3}{ac+5a^2}\)
\(\le\dfrac{20b^3-ab\left(a+b\right)}{ab+5b^2}+\dfrac{20c^3-bc\left(b+c\right)}{bc+5c^2}+\dfrac{20a^3-ca\left(c+a\right)}{ac+5a^2}\)
\(=\dfrac{b\left(4b-a\right)\left(5b+a\right)}{ab+5b^2}+\dfrac{c\left(4c-b\right)\left(5c+b\right)}{bc+5c^2}+\dfrac{a\left(4a-c\right)\left(5a+c\right)}{ac+5a^2}\)
\(=4b-a+4c-b+4a-c=3\left(a+b+c\right)\)
Pls tìm trước khi hỏi $$\dfrac{19b^3-a^3}{ab+5^2}+\dfrac{19c^3-b^3}{bc+5c^2}+\dfrac ...
Cho a,b,c>0.Cm:(19b^3-a^3)/(ab+5b^2)+ - Trường Toán Pitago – Hướng dẫn ...
C/m bất đẳng thức khó cho hsg
C/m bất đẳng thức khó cho hsg | Diễn đàn HOCMAI - Cộng đồng học tập ...
Cho a,b,c >0 và a+b+c=1.CMR (19b^3-a^3)/(ba+5b^2)+(19c^3-b^3)/(cb ...
Câu hỏi của Anh đẹp traiii - Toán lớp 9 - Học toán với OnlineMath
Học tại nhà - Toán - Chứng minh đẳng thức
Bất đẳng thức - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ ...
Bất đẳng thức
Đề thi HSG 12 THPT An Lão, Hải Phòng - Diễn Đàn MathScope
giúp tớ bài toán Cm 9 này với! hu hu!? | Yahoo Hỏi & Đáp
VMF,HMF,k2pi, mathscope,... đủ cả
Chuẩn hóa: a+b+c=3k
\(\Rightarrow\)\(\dfrac{a}{k}+\dfrac{b}{k}+\dfrac{c}{k}=3\)
Đặt (\(\dfrac{a}{k};\dfrac{b}{k};\dfrac{c}{k}\))\(\Rightarrow\left(x;y;z\right)\);x+y+z=3
ĐPCM\(\Leftrightarrow\)\(\sum\dfrac{19y^3-x^3}{xy+5y^2}\le3\left(x+y+z\right)\)
Ta CM BĐT:
\(\dfrac{19y^3-x^3}{xy+5y^2}\le4y-x\Leftrightarrow-\dfrac{\left(y-x\right)^2\left(x+y\right)}{xy+5y^2}\le0\)(đúng)
CMTT\(\Rightarrow\)ĐPCM
\(+\frac{20b^3-\left(a^3+b^3\right)}{ab+5b^2}\le\frac{20b^3-ab\left(a+b\right)}{ab+5b^2}=\frac{b\left(20b^2-a^2-ab\right)}{b\left(a+5b\right)}=\frac{\left(4b-a\right)\left(a+5b\right)}{a+5b}=4b-a\)
( áp dụng bđt : \(a^3+b^3\ge ab\left(a+b\right)\) ( biến đổi tương đương là c/m đc ) )
Dấu "=" \(\Leftrightarrow a=b\)
+ Tương tự : \(\frac{19c^3-b^3}{bc+5c^2}\le4c-b\) Dấu "=" <=> b = c
\(\frac{19a^3-c^3}{ac+5a^2}\le4a-c\) Dấu "=" \(\Leftrightarrow a=c\)
Cộng vế theo vế ta có đpcm. Dấu "=" \(\Leftrightarrow a=b=c=\frac{1}{3}\)
Lời giải:
Bạn nhớ tới bổ đề sau: Với $a,b>0$ thì $a^3+b^3\geq ab(a+b)$.
Áp dụng vào bài:
$5a^3-b^3\leq 5a^3-[ab(a+b)-a^3]=6a^3-ab(a+b)$
$\Rightarrow \frac{5a^3-b^3}{ab+3a^2}\leq \frac{6a^3-ab(a+b)}{ab+3a^2}=\frac{6a^2-ab-b^2}{3a+b}=\frac{(3a+b)(2a-b)}{3a+b}=2a-b$
Tương tự:
$\frac{5b^3-c^3}{bc+3b^2}\leq 2b-c; \frac{5c^3-a^3}{ca+3c^2}\leq 2c-a$
Cộng theo vế:
$\Rightarrow \text{VT}\leq a+b+c=3$
Ta có đpcm
Dấu "=" xảy ra khi $a=b=c=1$
\(\dfrac{a^5}{b^3+c^2}+\dfrac{b^3+c^2}{4}+\dfrac{a^4}{2}\ge3\sqrt[3]{\dfrac{a^9.\left(b^3+c^2\right)}{8\left(b^3+c^2\right)}}=\dfrac{3a^3}{2}\)
Tương tự và cộng lại:
\(\Rightarrow M-\dfrac{a^4+b^4+c^4}{2}+\dfrac{a^3+b^3+c^3}{4}+\dfrac{a^2+b^2+c^2}{4}\ge\dfrac{3}{2}\left(a^3+b^3+c^3\right)\)
\(\Rightarrow M\ge\dfrac{a^4+b^4+c^4}{2}+\dfrac{5}{4}\left(a^3+b^3+c^3\right)-\dfrac{3}{4}\)
Mặt khác ta có:
\(\dfrac{1}{2}\left(a^4+b^4+c^4\right)\ge\dfrac{1}{6}\left(a^2+b^2+c^2\right)^2=\dfrac{3}{2}\)
\(\left(a^3+a^3+1\right)+\left(b^3+b^3+1\right)+\left(c^3+c^3+1\right)\ge3\left(a^2+b^2+c^2\right)=9\)
\(\Rightarrow2\left(a^3+b^3+c^3\right)+3\ge9\Rightarrow a^3+b^3+c^3\ge3\)
\(\Rightarrow M\ge\dfrac{3}{2}+\dfrac{15}{4}-\dfrac{3}{4}=...\)