Cho tam giác ABC vuông tại A đường cao AM, biết AB = 12cm, BM = 6cm. Tính AM, AC, BC, CM?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: \(AN\cdot AC=AH^2\)
\(AC^2-HC^2=AH^2\)
Do đó: \(AN\cdot AC=AC^2-HC^2\)
a: Xet ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
HB=6^2/10=3,6cm
a: Xét ΔABC có BM là phân giác
nên \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)
=>\(\dfrac{AM}{6}=\dfrac{CM}{10}\)
=>\(\dfrac{AM}{3}=\dfrac{CM}{5}\)
mà AM+CM=AC=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{3}=\dfrac{CM}{5}=\dfrac{AM+CM}{3+5}=\dfrac{8}{8}=1\)
=>\(AM=3\cdot1=3\left(cm\right)\)
b: Xét ΔABM vuông tại A và ΔEBA vuông tại E có
\(\widehat{EBA}\) chung
Do đó: ΔABM đồng dạng với ΔEBA
c: Ta có: ΔABM vuông tại A
=>\(BM^2=BA^2+AM^2\)
=>\(BM^2=6^2+3^2=45\)
=>\(BM=3\sqrt{5}\left(cm\right)\)
Xét ΔBAM vuông tại A có AE là đường cao
nên \(BE\cdot BM=BA^2\)
=>\(BE\cdot3\sqrt{5}=6^2=36\)
=>\(BE=\dfrac{36}{3\sqrt{5}}=\dfrac{12}{\sqrt{5}}\left(cm\right)\)
Theo Pytago: \(BC^2=AB^2+AC^2\\ \Rightarrow AC=\sqrt{BC^2-AB^2}=\sqrt{10^2-6^2}=8\left(cm\right)\)
△ABC có BM là phân giác
\(\Rightarrow\dfrac{BA}{BC}=\dfrac{MA}{MC}\\ \Rightarrow\dfrac{MA}{MC}=\dfrac{6}{10}=\dfrac{3}{5}\\ \Rightarrow\dfrac{MA}{3}=\dfrac{MC}{5}=\dfrac{MA+MC}{3+5}=\dfrac{8}{8}=1\\ \Rightarrow AM=1\cdot3=3\left(cm\right)\)
a Tam giác ABC cân tại A => AB=AC=15
Tia p/g BM
=> Theo tính chất đương p/g ta có
AMAB=MCBCAMAB=MCBC
MC=AC-AM
=>AMAB=AC−AMBCAMAB=AC−AMBC
AM15=15−AM10AM15=15−AM10
=> AM= 9
=> MC=AC-AM=15-9=6
BM vuông góc BN
=> BM là tia p/g góc ngoài tại B
=>NCNA=BCBANCNA=BCBA
=> NC.BA=BC.NA
NC.BA-BC.NA=0
NC.BA-BC(AC+CN)= 0
=> NC.15-10(15+CN)=0
=> NC=30