Tính giá trị của các biểu thức sau:
a. \(15,3 - 21,5 - 3.1,5\)
b. \(2.\left( {{4^2} - 2.4,1} \right) + 1,25:5\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1).15,3-21,5-3.1,5 = -10.7
2).2(4 2-2.4,1)+1,25:5 = 0.300370048 ( cái nài mik bấm máy ra vậy nếu sai thì bảo mik nha )
a) \(\left(\dfrac{3}{4}\right)^{-2}\cdot3^2\cdot12^0=16\)
b) \(\left(\dfrac{1}{12}\right)^{-1}\cdot\left(\dfrac{2}{3}\right)^{-2}=27\)
c) \(\left(2^{-2}\cdot5^2\right)^{-2}:\left(5\cdot5^{-5}\right)=16\)
a)
$16^{\alpha }+16^{-\alpha } = (4^2)^{\alpha }+(4^2)^{-\alpha } = 4^{2\alpha }+4^{-2\alpha }$
$4^{2\alpha }+4^{-2\alpha } = 4^{2\log_4{\frac{1}{5}}}+4^{-2\log_4{\frac{1}{5}}} = \left(\frac{1}{5}\right)^2+\left(\frac{1}{5}\right)^{-2} = \frac{1}{25}+25 = \frac{26}{25}$
b)
$\left(2^{\alpha }+2^{-\alpha }\right)^2 = \left(\sqrt{4}\right)^{\alpha }+\left(\sqrt{4}\right)^{-\alpha } = 4^{\frac{\alpha}{2}}+4^{-\frac{\alpha}{2}}$
$4^{\frac{\alpha}{2}}+4^{-\frac{\alpha}{2}} = 4^{\frac{\log_4{\frac{1}{5}}}{2}}+4^{-\frac{\log_4{\frac{1}{5}}}{2}} = \left(\frac{1}{5}\right)^{\frac{1}{2}}+\left(\frac{1}{5}\right)^{-\frac{1}{2}} = \sqrt{\frac{1}{5}}+\frac{1}{\sqrt{5}} = \frac{2}{\sqrt{5}}$
a) \(\left(-5\right)^{-1}=-\dfrac{1}{5}\)
b) \(2^0\cdot\left(\dfrac{1}{2}\right)^{-5}=1\cdot32=32\)
c) \(6^{-2}\cdot\left(\dfrac{1}{3}\right)^{-3}:2^{-2}\)
\(=\dfrac{1}{36}\cdot27:\dfrac{1}{4}\)
\(=\dfrac{27\cdot4}{36}=3\)
\(b.\)
\(=\sqrt{\left(3a\right)^2\cdot\left(b-2\right)^2}\)
\(=\left|3a\right|\cdot\left|b-2\right|\)
Với : \(a=2,b=-\sqrt{3}\)
\(2\cdot3\cdot\left(-\sqrt{3}-2\right)=6\cdot\left(-\sqrt{3}-2\right)\)
a)
\(\begin{array}{l}\left( {0,25 - \frac{5}{6}} \right).1,6 + \frac{{ - 1}}{3}\\ =(\frac{25}{100}-\frac{5}{6}).\frac{16}{10}+\frac{-1}{3}\\= \left( {\frac{1}{4} - \frac{5}{6}} \right).\frac{8}{5} + \frac{{ - 1}}{3}\\ = \left( {\frac{6}{{24}} - \frac{{20}}{{24}}} \right).\frac{8}{5} + \frac{{ - 1}}{3}\\ = \frac{{ - 14}}{{24}}.\frac{8}{5} + \frac{{ - 1}}{3}\\ = \frac{{ - 14}}{{15}} + \frac{{ - 1}}{3}\\ = \frac{{ - 14}}{{15}} + \frac{{ - 5}}{{15}}\\ = \frac{{ - 19}}{{15}}\end{array}\)
b)
\(\begin{array}{l}3 - 2.\left[ {0,5 + \left( {0,25 - \frac{1}{6}} \right)} \right]\\ = 3 - 2.\left[ {\frac{1}{2} + \left( {\frac{1}{4} - \frac{1}{6}} \right)} \right]\\ = 3 - 2.\left( {\frac{1}{2} + \frac{1}{{12}}} \right)\\ =3-2.(\frac{6}{12}+\frac{1}{12})\\= 3 - 2.\frac{7}{{12}}\\ = 3 - \frac{7}{6}\\=\frac{18}{6}-\frac{7}{6}\\ = \frac{{11}}{6}\end{array}\)
a) \(\sqrt[4]{\dfrac{1}{16}}=\dfrac{1}{2}\)
b) \(\left(\sqrt[6]{8}\right)^2=\sqrt[\dfrac{6}{2}]{8}=\sqrt[3]{8}=2\)
c) \(\sqrt[4]{3}\cdot\sqrt[4]{27}=\sqrt[4]{3\cdot27}=\sqrt[4]{81}=3\)
Bài 1:
a) Ta có: \(A=-1.7\cdot2.3+1.7\cdot\left(-3.7\right)-1.7\cdot3-0.17:0.1\)
\(=1.7\cdot\left(-2.3\right)+1.7\cdot\left(-3.7\right)+1.7\cdot\left(-3\right)+1.7\cdot\left(-1\right)\)
\(=1.7\cdot\left(-2.3-3.7-3-1\right)\)
\(=-10\cdot1.7=-17\)
b) Ta có: \(B=2\dfrac{3}{4}\cdot\left(-0.4\right)-1\dfrac{2}{3}\cdot2.75+\left(-1.2\right):\dfrac{4}{11}\)
\(=\dfrac{11}{4}\cdot\left(-0.4\right)-\dfrac{5}{3}\cdot\dfrac{11}{4}+\left(-1.2\right)\cdot\dfrac{11}{4}\)
\(=\dfrac{11}{4}\left(-0.4-\dfrac{5}{3}-1.2\right)\)
\(=-\dfrac{539}{60}\)
c) Ta có: \(C=\dfrac{\left(2^3\cdot5\cdot7\right)\cdot\left(5^2\cdot7^3\right)}{\left(2\cdot5\cdot7^2\right)^2}\)
\(=\dfrac{2^3\cdot5^3\cdot7^4}{2^2\cdot5^2\cdot7^4}\)
\(=10\)
a,
\(\begin{array}{l}15,3 - 21,5 - 3.1,5\\ = 15,3 - 21,5 - 4,5\\ = 15,3 - \left( {21,5 + 4,5} \right)\\ = 15,3 - 26\\ = - \left( {26 - 15,3} \right)\\ = - 10,7\end{array}\)
b,
\(\begin{array}{l}2.\left( {{4^2} - 2.4,1} \right) + 1,25:5\\ = 2.\left( {16 - 8,2} \right) + 0,25\\ = 2.7,8 + 0,25\\ = 15,6 + 0,25\\ = 15,85\end{array}\)
a, 15 , 3 − 21 , 5 − 3.1 , 5 = 15 , 3 − 21 , 5 − 4 , 5 = 15 , 3 − ( 21 , 5 + 4 , 5 ) = 15 , 3 − 26 = − ( 26 − 15 , 3 ) = − 10 , 7 b, 2. ( 4 2 − 2.4 , 1 ) + 1 , 25 : 5 = 2. ( 16 − 8 , 2 ) + 0 , 25 = 2.7 , 8 + 0 , 25 = 15 , 6 + 0 , 25 = 15 , 85