K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2023

Áp dụng định lý Pytago vào tam giác ABC

\(BC=\sqrt{3^2+4^2}=5\)

ÁP dụng hệ thức lượng vào tam giác ABC

\(\dfrac{1}{AH^2}=\dfrac{1}{AB^2}+\dfrac{1}{AC^2}\)

\(\Leftrightarrow AH=\sqrt{\dfrac{1}{\dfrac{1}{3^2}+\dfrac{1}{4^2}}}=\dfrac{12}{5}\)

\(sinB=\dfrac{AC}{BC}=\dfrac{4}{5}\)\(\Rightarrow\widehat{B}\simeq53,1^o\)

a: Xet ΔABC vuông tại A và ΔHBA vuông tại H co

góc B chung

=>ΔABC đồng dạng với ΔHBA

=>BA/BH=BC/BA

=>BA^2=BH*BC

b: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

Bài 1: 

AH=12cm

AC=20cm

\(\widehat{ABC}=37^0\)

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

Do đó: ΔHBA\(\sim\)ΔABC

b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(AH=\dfrac{AB\cdot AC}{BC}=4.8\left(cm\right)\)

Bài 1: 

a: BC=30cm

AH=14,4(cm)

BH=10,8(cm)

Bài 5: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+9\right)=400\)

\(\Leftrightarrow BH^2+25HB-16HB-400=0\)

\(\Leftrightarrow BH=16\left(cm\right)\)

hay BC=25(cm)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)

9 tháng 7 2018

Xin 1 slot xíu nữa làm giờ đang bận 

9 tháng 7 2018

đừng bắt trc t hiếu à , m càng ngày càng giống t rồi đấy , đờ mờ

27 tháng 11 2021

a) Áp dụng định lí Py - ta - go vào tam giác vuông ABC ta có:

BC = \(\sqrt{AB^2+AC^2}=\sqrt{3^2+4^2}\)

BC = 5 cm

Từ hệ thức của cạnh góc vuông và hình chiếu của nó trên cạnh huyền suy ra:     

HB = \(\dfrac{AB^2}{BC}=\dfrac{3^2}{5}=1,8\) cm

Ta có:     HB + HC = BC

              1,8 +  HC = 5

                        HC = 3,2 cm

Theo hệ thức liên quan đến đường cao ta có:

AH2 = HB . HC

AH2 = 1,8 . 3,2

AH2 = 5,76 

⇒ AH = 2,4 cm

11 tháng 11 2021

Câu 15:

a: ĐKXĐ: x>=0; x<>1