1. Cho 2 đường tròn (O;R) và (O';r) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC ($B\in (O), C\in (O')$)a. Tính góc BACb. Tính BC.c. Gọi D là gđ của CA với đường tròn (O) (D khác A). CMR 3 điểm B,O,D thẳng hàngd. Tính BA, CA2. Cho đ B nằm giữa A và Csao cho AB=14cm, BC=28cm. Vẽ về 1 phía của AC các nửa đường tròn tâm I,K,O có đường kính theo thứ tự AB, BC, AC.Tính bán kính...
Đọc tiếp
1. Cho 2 đường tròn (O;R) và (O';r) tiếp xúc ngoài tại A. Kẻ tiếp tuyến chung ngoài BC ($B\in (O), C\in (O')$)
a. Tính góc BAC
b. Tính BC.
c. Gọi D là gđ của CA với đường tròn (O) (D khác A). CMR 3 điểm B,O,D thẳng hàng
d. Tính BA, CA
2. Cho đ B nằm giữa A và Csao cho AB=14cm, BC=28cm. Vẽ về 1 phía của AC các nửa đường tròn tâm I,K,O có đường kính theo thứ tự AB, BC, AC.Tính bán kính đường tròn (M) tiếp xúc ngoài với các nửa đường tròn (I), (K), và tiếp xúc trong với nửa đường tròn (O).
3. Cho đường tròn (O) nội tiếp tam giác đều ABC. 1 tiếp tuyến của đường tròn cắt AB, AC theo thứ tự ở M và N.
a. Tính diện tích AMN biết BC=8cm, MN=3cm
b. CMR: $MN^2=AM^2+AN^2-AM.AN$
c*. Chứng minh rằng: $\frac{AM}{MB}+\frac{AN}{NC}=1$
a) Gọi J là trung điểm A'B'. Ta thấy ngay OJ là đường trung bình hình thang AA'B'B.
Từ đó suy ra \(OJ=\frac{AA'+BB'}{2}=\frac{R\sqrt{3}}{2}\)
Lại do OJ // AA' // BB' nên \(OJ⊥A'B'\).
Xét tam giác vuông MOI, có \(MO=R;OJ=\frac{R\sqrt{3}}{2}\Rightarrow MJ=\sqrt{R^2-\frac{3R}{4}}=\frac{R}{2}\) (Định lý Pitago)
Tương tự \(JN=\frac{R}{2}\Rightarrow MN=R.\)
b) Dễ thấy \(\widehat{IMK}=\widehat{INK}=90^o\Rightarrow\) tứ giác MINK nội tiếp đường tròn đường kính IK.
Xét tam giác MON có MO = ON = MN = R nên tam giác đó đều, vậy \(\widehat{MON}=60^o\Rightarrow\widehat{MBN}=30^o\)
(Góc nội tiếp và góc ở tâm cùng chắn một cung)
Do MINK và AMNB nội tiếp nên \(\widehat{MKI}=\widehat{MNI}=\widehat{MBA}\)
Vậy \(\Delta MIK\sim\Delta MAB\left(g-g\right)\Rightarrow\frac{IK}{AB}=\frac{MK}{MB}=tan\widehat{MBK}=tan30^o=\frac{\sqrt{3}}{3}\)
Suy ra \(IK=\frac{\sqrt{3}}{3}.2R=\frac{2R\sqrt{3}}{3}\)
Vậy thì bán kính đường tròn nội tiếp MINK là \(\frac{R\sqrt{3}}{3}.\)
c) Gọi H là chân đường vuông góc hạ từ K xuống AB. Ta thấy ngay KH là đường cao tam giác AKB.
Diện tích tam giác AKB lớn nhất khi KH lớn nhất hay IH lớn nhất.
IH lớn nhất khi tam giác KAB cân tại K. Lại có \(\widehat{AKB}=60^o\) nên KAB là tam giác đều. Khi đó MN là đường trung bình tam giác KAB nên có tính chất là song song và bằng một nửa AB.
\(S_{KAB}=\frac{1}{2}.AB.OK=\frac{1}{2}.2R.R\sqrt{3}=\sqrt{3}R^2\)
neu mnik bang mn thi chung ta se phai lay aq1p +aqwp roi nhan ra lay ket qua chia cho S tim dc la ok