Tìm chữ số tận cùng của 157^240; 268^268; 2023^2022
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:12433=124.(1242)16=124.153762=\(\)124.\(\left(\overline{...6}\right)\)=\(\overline{...4}\)
Vậy chữ số tận cùng của 12433 là 4.
Ta có:178345=178.(1784)86=178.\(\left(\overline{...6}\right)\)=\(\overline{...8}\)
Vậy chữ số tận cùng của 178345 là 8.
Ta có:15777=157.(1574)19=157.\(\left(\overline{...1}\right)\)=\(\overline{...7}\)
Vậy chữ số tận cùng của 15777 là 7.
Ta có : 74n =.....1(có tận cùng là 1)
Số số hạng ở dãy trên là (177-17):20+1=8 -> số tận cùng của tích trên = 78 =(74)2 = .....1(có tận cùng là 1)
Ta thấy tích trên có 9 thừa số.
\(\Rightarrow\)17.37.57..............157.177
= .....7. .....7............ .....7 ( 9 thừa số có tận cùng là 7)
= ......9. ..........9 . ......9 . ...........9 . ............7
= ...............1 . ...........7
= .............7
\(\Rightarrow\)Tích 17.37.57..........157.177 có chữ số tận cùng là 7
a) Ta có 2014 = 4.503+2
\(\Rightarrow\) \(157^{4\cdot503+2}\) = \(157^{4\cdot503}\) .\(157^2\)
Vì \(157^{4.503}\) có chữ số tận cùng là 1
\(\Rightarrow\) 1.\(157^2\) = 1. 24649 = 24649 và có chữ số tận cùng là 9
Vậy \(157^{2014}\) có chữ số tận cùng là 9
Ta thấy:Các số có tận cùng là 0;1;5;6 khi nâng lên bất kì lũy thừa bậc nào đều có tận cùng là chính nó.
=>a)=...5
b)=...0.
c=...6
d=...1.
e)9^18=(9^2)^9=81^9=...1
Bài 1:
S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)
Nhóm 4 thừa số 2 vào một nhóm thì vì:
2023 : 4 = 505 dư 3
Vậy
S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)
S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8
S = \(\overline{..6}\) x 8
S = \(\overline{..8}\)
Bài 2:
S = 3 x 13 x 23 x...x 2023
Xét dãy số: 3; 13; 23;..;2023
Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10
Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)
Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.
Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)
Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)
A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)
A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27
A = \(\overline{..7}\)
khó quá bạn
*) 157²⁴⁰ = [(157⁴)⁵]¹²
157⁴ ≡ 1 (mod 10)
(157⁴)⁵ ≡ 1⁵ (mod 10) ≡ 1 (mod 10)
157²⁴⁰ ≡ [(157⁴)⁵]¹² (mod 10) ≡ 1¹² (mod 10) ≡ 1 (mod 10)
Vậy chữ số tận cùng của 157²⁴⁰ là 1
*) 268²⁶⁸ = [(268⁴)⁵]¹³.268⁸
268⁴ ≡ 6 (mod 10)
(268⁴)⁵ ≡ 6⁵ (mod 10) ≡ 6 (mod 10)
[(268⁴)⁵]¹³ ≡ 6¹³ (mod 10) ≡ 6⁵.6⁸ (mod 10) ≡ 6.6 (mod 10) ≡ 6 (mod 10)
268⁸ ≡ 268⁴ . 268⁴ (mod 10) ≡ 6 . 6 (mod 10) ≡ 6 (mod 10)
268²⁶⁸ ≡ [(268⁴)⁵]¹³.268⁸ (mod 10) ≡ 6.6 (mod 10) ≡ 6 (mod 10)
Vậy chữ số tận cùng của 268²⁶⁸ là 6
*) 2023²⁰²² = 2023²⁰⁰⁰.2023²²
2023³ ≡ 7 (mod 10)
(2023³)⁵ ≡ 7⁵ (mod 10) ≡ 7 (mod 10)
2023¹⁶ ≡ (2023³)⁵ . 2023 (mod 10) ≡ 7.2023 (mod 10) ≡ 1 (mod 10)
2023²⁰⁰⁰ ≡ (2023¹⁶)²⁵⁵ (mod 10) ≡ 1¹²⁵ (mod 10) ≡ 1 (mod 10)
(2023³)⁷ ≡ 7⁷ (mod 10) ≡ 3 (mod 10)
2023²² ≡ (2023³)⁷.2023 (mod 10) ≡ 3.3 (mod 10) ≡ 9 (mod 10)
2023²⁰²² ≡ 2023²⁰⁰⁰.2023²⁰²² (mod 10) ≡ 1.9 (mod 10) ≡ 9 (mod 10)
Vậy chữ số tận cùng của 2023²⁰²² là 9