e=1*2^2+2*3^2+3*4^2+4*5^2+......+98*99^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
a. A= -2012+(-596)+(-201)+496+301
= -2012+(496-596)+(301-201)
= -2012+(-100)+100
= -2012
c.
Tổng C có số số hạng là:
(100-1):1+1=100
Có số cặp là:
100:2=50(cặp)
Ta có: C= 1-2+3-4+...+99-100
= (1-2)+(3-4)+...+(99-100)
= (-1)+(-1)+...+(-1)
= (-1).50
=-50
tính nhanh (2/3+3/4+5/6+...+99/100).(1/2+2/3+3/4+...+98/99)-(1/2+1/3+...+99/100).(2/3+2/4+...+98/99)
\(D=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{19}-\dfrac{1}{20}=\dfrac{1}{2}-\dfrac{1}{20}=\dfrac{9}{20}\)
\(E=\dfrac{1}{99}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{98\cdot99}\right)\)
\(=\dfrac{1}{99}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}\right)\)
\(=\dfrac{1}{99}-1+\dfrac{1}{99}=\dfrac{2}{99}-1=-\dfrac{97}{99}\)
$B=1+2+3+4+...+2022+2023$
Số các số hạng của B là:
$(2023-1):1+1=2023$ (số)
Tổng B bằng:
$(2023+1)\cdot2023:2=2047276$
$---$
$C=2+4+6+...+98+100$
Số các số hạng của C là:
$(100-2):2+1=50$ (số)
Tổng C bằng:
$(100+2)\cdot50:2=2550$
$---$
$D=1+3+5+...+97+99$
Số các số hạng của D là:
$(99-1):2+1=50$ (số)
Tổng D bằng:
$(99+1)\cdot50:2=2500$
$---$
$E=10+14+18+...+98+102$
Số các số hạng của E là:
$(102-10):4+1=24$ (số)
Tổng E bằng:
$(102+10)\cdot24:2=1344$
$Toru$
Số lượng số hạng:
\(\left(2023-1\right):1+1=2023\) (số hạng)
Tổng B là:
\(B=\left(2023+1\right)\cdot2023:2=2047276\)
_______________
Số lượng số hạng là:
\(\left(100-2\right):2+1=50\) (số hạng)
Tổng C là:
\(C=\left(100+2\right)\cdot50:2=2550\)
________________
Số lượng số hạng là:
\(\left(99-1\right):2+1=50\) (số hạng)
Tổng D là:
\(D=\left(99+1\right)\cdot50:2=2500\)
________________
Số lượng số hạng là:
\(\left(102-10\right):4+1=24\) (số hạng)
Tổng E là:
\(E=\left(102+10\right)\cdot24:2=1334\)
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)