cho đoạn thẳng AB lấy C nằm giữa 2 điểm AB và 1 phía của AB có các tam giác đều ACF và BCE
a) chứng minh AE=BF
b) x/đ góc giữa 2 đoạn thẳng AE và BF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trường hợp :
Gọi M là trung điểm của AB. Khi đó MA = MB = a.
Điểm E nằm giữa hai điểm A và M, điểm F nằm giữa hai điểm B và M.
Do đó ME = MA - AE = a - AE; MF = MB - BF = a - BF.
Vì AE = BF nên ME = MF. Vậy M là trung điểm chung của hai đoạn thẳng AB và EF. Qua M vẽ thì xy là đường trung trực chung của AB và EF.
Trường hợp : Chứng minh tương tự
Câu hỏi của Đông Phí Mạnh - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
1)
- Xét tam giác EDC có :
+ PE = PD (GT)
+ NE = NC (GT)
=> PN là đường trung bình của tam giác EDC => \(PN=\frac{1}{2}CD\) (1)
-Xét tam giác EAC có:
+ NE = NC (GT )
+ ME = MA (GT )
=> NM là đường trung bình của tam giác EAC => \(MN=\frac{1}{2}AC\) (2)
- Xét tam giác EAD có :
+ ME = MA (GT)
+ PE =PD (GT )
=> MP là đường trung bình của tam giác EAD => \(MP=\frac{1}{2}AD\) (3)
-Từ 1 , 2 , 3 và AD = DC = CA (GT)
=> PN = NM = MP hay tam giác MNP đều
1) Vì P là trung điểm của DE ; N là trung điểm của EC => PN là đường trung bình của tam giác EDC
=> \(PN=\frac{1}{2}DC\)(1)
Vì M là trung điểm của AE ; N là trung điểm của EC => MN là đường trung bình của tam giác AEC
=> \(MN=\frac{1}{2}AC\) (2)
Vì P là trung điểm của DE ; M là trung điểm của AE => PM là đường trung bình của tam giác ADE
=> \(PM=\frac{1}{2}AD\)(3)
Mà \(\frac{1}{2}AD=\frac{1}{2}DC=\frac{1}{2}AC\) Nên từ (1) ; (2) \(\Rightarrow MN=NP=MP\) Hay tam MNP đều (đpcm)
2) Đang nghĩ
a) Ta có \(\widehat{ACE}=\widehat{DCB}\left(=60^o+\widehat{DCE}\right)\)
Xét tam giác DCB và tam giác ACE có:
DC = AC (gt)
CB = CE (gt)
\(\widehat{ACE}=\widehat{DCB}\) (cmt)
\(\Rightarrow\Delta DCB=\Delta ACE\left(c-g-c\right)\)
\(\Rightarrow DB=AE\) (Hai cạnh tương ứng)
b) Do \(\Delta DCB=\Delta ACE\Rightarrow\widehat{NBC}=\widehat{MEC}\)
Do DB = AE nên ME = NB
Xét tam giác CME và tam giác CNB có:
ME = NB (cmt)
CE = CB (gt)
\(\widehat{MEC}=\widehat{NBC}\) (cmt)
\(\Rightarrow\Delta CME=\Delta CNB\left(c-g-c\right)\)
c) Vì \(\Delta CME=\Delta CNB\Rightarrow CM=CN;\widehat{MCE}=\widehat{NCB}\)
Suy ra \(\widehat{MCE}+\widehat{ECN}=\widehat{NCB}+\widehat{ECN}=\widehat{ECB}=60^o\)
\(\Rightarrow\widehat{MCN}=60^o\)
Xét tam giác CMN có CM = CN nên nó là tam giác cân.
Lại có \(\widehat{MCN}=60^o\) nên CMN là tam giác đều.