\(\frac{2x+3}{5x-3}-\frac{3}{4x-6}=\frac{2}{5}\)
giup minh voi
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
d: =>4x+6=15x-12
=>4x-15x=-12-6=-18
=>-11x=-18
hay x=18/11
e: =>\(45x+27=12+24x\)
=>21x=-15
hay x=-5/7
f: =>35x-5=96-6x
=>41x=101
hay x=101/41
g: =>3(x-3)=90-5(1-2x)
=>3x-9=90-5+10x
=>3x-9=10x+85
=>-7x=94
hay x=-94/7
\(P=\frac{\left(\frac{2x-3}{4x^2-12x+5}+\frac{2x-8}{13x-2x^2-20}-\frac{3}{2x-1}\right)}{\left(\frac{21+2x-8x^2}{4x^2+4x-3}\right)}+1\)
\(=\frac{\left(\frac{2x-3}{4x^2-2x-10x+5}+\frac{-2\left(4-x\right)}{8x-2x^2+5x-20}-\frac{3}{2x-1}\right)}{\left(\frac{21-12x+14x-8x^2}{4x^2+6x-2x-3}\right)}+1\)
\(=\frac{\left(\frac{2x-3}{2x\left(2x-1\right)-5\left(2x-1\right)}+\frac{-2\left(4-x\right)}{2x\left(4-x\right)-5\left(4-x\right)}-\frac{3}{2x-1}\right)}{\left(\frac{3\left(7-4x\right)+2x\left(7-4x\right)}{2x\left(2x+3\right)-\left(2x+3\right)}\right)}+1\)
\(=\frac{\left(\frac{2x-3}{\left(2x-1\right)\left(2x-5\right)}+\frac{-2\left(4-x\right)}{\left(2x-5\right)\left(4-x\right)}-\frac{3}{2x-1}\right)}{\frac{\left(7-4x\right)\left(3+2x\right)}{\left(2x+3\right)\left(2x-1\right)}}+1\)
\(=\frac{\left(\frac{2x-3}{\left(2x-1\right)\left(2x-5\right)}+\frac{-2\left(2x-1\right)}{\left(2x-1\right)\left(2x-5\right)}-\frac{3\left(2x-5\right)}{\left(2x-1\right)\left(2x-5\right)}\right)}{\frac{7-4x}{2x-1}}+1\)
\(=\frac{2x-3-4x+2-6x+15}{\left(2x-1\right)\left(2x-5\right)}\times\frac{2x-1}{7-4x}+1\)
\(=\frac{14-8x}{2x-5}\times\frac{1}{7-4x}+1\)
\(=\frac{2\left(7-4x\right)}{2x-5}\times\frac{1}{7-4x}+\frac{2x-5}{2x-5}\)
\(=\frac{2+2x-5}{2x-5}\)
\(=\frac{2x-3}{2x-5}\)
a) <=>(x - 3/4)(x-3/4 +x-1/2)=0
<=>(x-3/4)(2x-5/4)=0
<=>x-3/4=0 hoặc 2x-5/4=0
<=>x=3/4 hoặc x=5/8
Vậy tập nghiệm của phương trình trên là S={3/4;5/8}
b)<=>140x/35 - 7(4x-3)/35 - 10(x+3)/35=0
<=>140x-28x+21-10x-30=0
<=>102x=9
<=>x=3/34
Vậy tập nghiệm của phương trình trên là S={3/34}
1/ \(\frac{3\left(x+3\right)}{4}+\frac{1}{2}=\frac{5x+9}{3}-\frac{7x-9}{4}\)
=> \(\frac{9\left(x+3\right)}{12}+\frac{6}{12}=\frac{4\left(5x+9\right)}{12}-\frac{3\left(7x-9\right)}{12}\)
=> \(9\left(x+3\right)+6=4\left(5x+9\right)-3\left(7x-9\right)\)
=> \(9x+27+6=20x+36-21x+27\)
=> \(9x-20x+21x=27-27-6+36\)
=> \(10x=30\)
=> \(x=3\)
Vậy phương trình có tập nghiệm là \(S=\left\{3\right\}\)
2.Ta có : \(\frac{2x-3}{3}-\frac{x-3}{6}=\frac{4x+3}{5}-17\)
=> \(\frac{10\left(2x-3\right)}{30}-\frac{5\left(x-3\right)}{30}=\frac{6\left(4x+3\right)}{30}-\frac{510}{30}\)
=> \(10\left(2x-3\right)-5\left(x-3\right)=6\left(4x+3\right)-510\)
=> \(20x-30-5x+15=24x+18-510\)
=> \(20x-5x-24x=18-510+30-15\)
=> \(-9x=-477\)
=> \(x=53\)
Vậy phương trình có tập nghiệm là \(S=\left\{53\right\}\)
3/ Ta có : \(\frac{5x-1}{6}+\frac{2\left(x+4\right)}{9}=\frac{7x-5}{15}+x-1\)
=> \(\frac{30\left(5x-1\right)}{180}+\frac{40\left(x+4\right)}{180}=\frac{12\left(7x-5\right)}{180}+\frac{180x}{180}-\frac{180}{180}\)
=> \(30\left(5x-1\right)+40\left(x+4\right)=12\left(7x-5\right)+180x-180\)
=> \(150x-30+40x+160=84x-60+180x-180\)
=> \(150x+40x-180x-84x=-60-180-160+30\)
=> \(-74x=-370\)
=> \(x=5\)
Vậy phương trình có tập nghiệm là \(S=\left\{5\right\}\)
1/ \(\frac{x-3}{3xy}\)+\(\frac{5x+3}{3xy}\)= \(\frac{6x}{3xy}\)=\(\frac{3}{y}\)
2/\(\frac{5x-7}{2x-3}\)+\(\frac{4-3x}{2x-3}\)=\(\frac{2x-3}{2x-3}\)=1
3/\(\frac{11x-7}{3-5x}\)-\(\frac{6x+4}{5x-3}\)=\(\frac{11x-7}{3-5x}\)+\(\frac{6x+4}{3-5x}\)=\(\frac{17x-3}{3-5x}\)
4/\(\frac{3}{2x+6}\)-\(\frac{x-6}{2x^2+6x}\)=\(\frac{3x}{x\left(2x+6\right)}\)-\(\frac{x-6}{x\left(2x+6\right)}\)=\(\frac{2x-6}{x\left(2x+6\right)}\)
5/\(\frac{1}{2x-10}\)+\(\frac{2x}{3x^2-15x}\)=\(\frac{1}{2\left(x-5\right)}\)+\(\frac{2x}{3x\left(x-5\right)}\)=\(\frac{3x}{6x \left(x-5\right)}\)+\(\frac{4x}{6x\left(x-5\right)}\)
=\(\frac{7x}{6x\left(x-5\right)}\)=\(\frac{7}{6\left(x-5\right)}\)
\(a,\frac{3}{2x+6}-\frac{x-6}{2x^2+6x}\) (x khác -3; khác 0)
\(=\frac{3}{2\left(x+3\right)}-\frac{x-6}{2x.\left(x+3\right)}=\frac{3x}{2x.\left(x+3\right)}-\frac{x-6}{2x.\left(x+3\right)}=\frac{3x-x+6}{2x.\left(x+3\right)}=\frac{2x+6}{x.\left(2x+6\right)}=\frac{1}{x}\)
\(b,\left(\frac{2x+1}{2x-1}-\frac{2x-1}{2x+1}\right):\frac{4x}{10x-5}\) (x khác 0 , khác 1/2 khác -1/2 )
\(=\left(\frac{\left(2x+1\right)^2}{\left(2x-1\right)\left(2x+1\right)}-\frac{\left(2x-1\right)^2}{\left(2x-1\right)\left(2x+1\right)}\right).\frac{10x-5}{4x}\)
\(=\left(\frac{4x^2+4x+1}{\left(2x-1\right)\left(2x+1\right)}-\frac{4x^2-4x+1}{\left(2x-1\right)\left(2x+1\right)}\right).\frac{10x-5}{4x}\)
\(=\frac{8x}{\left(2x-1\right)\left(2x+1\right)}.\frac{5.\left(2x-1\right)}{4x}=\frac{10}{2x+1}\)
ĐK \(\hept{\begin{cases}5x-3\ne0\\4x-6\ne0\end{cases}\Rightarrow\hept{\begin{cases}x\ne\frac{3}{5}\\x\ne\frac{3}{2}\end{cases}}}\)
Phương trình \(\Leftrightarrow\frac{\left(2x+3\right)\left(4x-6\right)-3\left(5x-3\right)}{\left(5x-3\right)\left(4x-6\right)}=\frac{2}{5}\)
\(\Leftrightarrow\frac{8x^2-12x+12x-18-15x+9}{\left(5x-3\right)\left(4x-6\right)}=\frac{2}{5}\)\(\Leftrightarrow\frac{8x^2-15x+9}{20x^2-42x+18}=\frac{2}{5}\)
\(\Leftrightarrow40x^2-84x+36=40x^2-75x-45\Leftrightarrow-9x=-81\Leftrightarrow x=9\left(tm\right)\)
Vậy x=9