K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DT
17 tháng 10 2023

X^2 - 49 = 0

=> x^2 = 49 = (±7)^2

=> x = 7 hoặc x = -7

21 tháng 12 2021

b: -7<x<7

25 tháng 12 2021

TK

25 tháng 12 2021

=> x2 - 7 và x- 49 trái dấu

Nhận xét: x- 7 > x- 9 nên để x- 7  và x- 49 trái dấu thì x- 7 > 0 và x- 49 < 0

x- 7 > 0  => x> 7

x- 49 < 0 => x< 49

=> 7 < x< 49. Vì x nguyên nên x= 9; 16 ; 25; 36

x2 = 9 => x = -3 hoặc x = 3

x2 = 16 => x = -4 hoặc 4

x= 25 => x = -5 ; 5

x= 36 => x = 6;-6

 

Vậy ....

26 tháng 2 2021

`(x^2+7)(x^2-49)<0`

Vì `x^2+7>=7>0`

`=>x^2-49<0`

`<=>x^2-7x+7x-49<0`

`<=>x(x-7)+7(x-7)<0`

`<=>(x-7)(x+7)<0`

Vì `x+7>x-7`

`=>` $\begin{cases}x+7>0\\x-7<0\\\end{cases}$

`=>` $\begin{cases}x>-7\\x<7\\\end{cases}$

`=>-7<x<7`

Vậy `-7<x<7`

Ta có: \(\left(x^2+7\right)\left(x^2-49\right)< 0\)

mà \(x^2+7>0\)

nên \(x^2-49< 0\)

\(\Leftrightarrow x^2< 49\)

\(\Leftrightarrow\left\{{}\begin{matrix}x>-7\\x< 7\end{matrix}\right.\)

Vậy: -7<x<7

15 tháng 7 2017

a)\(\left(x2+7\right).\left(x2-49\right)< 0\)

\(\left(x2+7\right).\left(x2-49\right)< 0\) chứng tỏ hai vế \(\left(x2+7\right)\)\(\left(x2-49\right)\) khác dấu nhau .

\(\left\{{}\begin{matrix}\left(x2+7\right)>0\\\left(x2-49\right)< 0\end{matrix}\right.\)

\(\left(x2+7\right)\) > \(\left(x2-49\right)\)

Nên ta có:

\(\left\{{}\begin{matrix}\left(x2+7\right)>0\\\left(x2-49\right)< 0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}\left(x+7\right)=0\\\left(x-49\right)=0\end{matrix}\right.\)\(\Rightarrow\)\(\left\{{}\begin{matrix}x=-7\\x=49\end{matrix}\right.\)

Vậy hai số nguyên đó là -7 và 49 .

Còn phần còn lại bạn làm tương tự nhé banhqua !

c: \(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{7}\\x=-\sqrt{7}\\x=-5\\x=5\end{matrix}\right.\)

3 tháng 12 2021

mik lớp 6 bạn

18 tháng 10 2020

a)x2-4x=x(x-4)

b)x2-5xy+x-5y=x(x-5y)+(x-5y)=(x+1)(x-5y)

c)x2-10xy-49+25y2=x2-10xy+25y2-49

=(x-5)2-72=(x-5-7)(x-5+7)

=(x-12)(x+2)

16 tháng 9 2021

\(a,=\left(x+1\right)^2\\ b,=\left(y-2\right)^2\\ c,=\left(x-3\right)^2\\ d,=\left(a-7\right)^2\\ e,=\left(m-2\right)^2\\ f,=\left(2x-1\right)^2\\ g,=\left(a+5\right)^2\\ h,=\left(z-10^2\right)\\ i,=\left(x+3y\right)^2\\ j,=\left(2x-5b\right)^2\\ k,=\left(a+5\right)^2\\ l,=\left(x^2+1\right)^2\\ m,=\left(y^3-1\right)^2=\left(y-1\right)^2\left(y^2+y+1\right)^2\\ n,=\left(c^5-5\right)^2\\ o,=\left(3x^2+2y\right)^2\\ p,=5m^2n^3\left(5m^2n^3-2\right)\)

\(\left|46x+49\right|=\left|19x+17\right|\)

\(\Rightarrow\orbr{\begin{cases}46x+49=19x+17\\46x+49=-19x-17\end{cases}\Rightarrow\orbr{\begin{cases}x=-\frac{32}{27}\\x=-\frac{66}{65}\end{cases}}}\)

\(\Rightarrow\left|x_1-x_2\right|=\left|-\frac{32}{27}-\frac{66}{65}\right|=....\)

\(\left(2x-1\right)\left(x+7\right)=x^2-49\)

\(\Leftrightarrow\left(2x-1\right)\left(x+7\right)=\left(x-7\right)\left(x+7\right)\)

\(\Leftrightarrow\left(x+7\right)\left(x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-7\\x=-6\end{matrix}\right.\)

16 tháng 5 2021

(2x-1)(x+7)=\(x^2\) -49

=> (2x-1)(x+7)=(x-7)(x+7)

=> (2x-1)(x+7)-(x-7)(x+7)=0

=>(2x-1-x+7)(x+7)=0

=> x+6=0 hoặc x+7=0

=> x=-6 hoặc x=-7