Cho tam giac ABC vuong tai B,duong cao BH,AB=3cm,BC=4cm,ke phan giac BI.Tinh do dai AC,CI?CM:Tam giac BAC dong dang tam giac HBC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : Tam giác ABC vuông ở B
=> AB2 + BC2 = AC2
=> 32 + 42 = AC2
=> AC2 = 25
=> AC = 5 (cm)
Vì BI là tia phân giác góc B
=> \(\frac{AI}{IC}=\frac{AB}{BC}\)
=> \(\frac{AI+IC}{IC}=\frac{AB+BC}{BC}\)
=> \(\frac{AC}{IC}=\frac{AB+BC}{BC}\)
=> \(IC=\frac{AC.BC}{AB+BC}=\frac{5.4}{3+4}=\frac{20}{7}\left(cm\right)\)
b) Xét tam giác ABC và tam giác HBC có
\(\hept{\begin{cases}\widehat{ACB}\text{ chung }\\\widehat{CHB}=\widehat{CBA}=90^{\text{o}}\end{cases}}\)
=> \(\Delta BAC\approx\Delta HBC\left(g-g\right)\)(1)
c) Xét tam giác CBK và tam giác CDB có :
\(\hept{\begin{cases}\text{\widehat{D} Chung }\\\widehat{BKD}=\widehat{CBD}\left(=90^{\text{o}}\right)\end{cases}}\)\(\hept{\begin{cases}\widehat{C}\text{ chung }\\\widehat{CBD}=\widehat{BKC}\left(=90^{\text{o}}\right)\end{cases}}\)
=> \(\Delta CBK\approx\Delta CDB\left(g-g\right)\)
=> \(\frac{BC}{CD}=\frac{BK}{BD}=\frac{CK}{BC}\)
=> \(\frac{BC}{CD}=\frac{CK}{BC}\Rightarrow BC^2=CK.CD\)
a) Xét tam giác HBA và tam giác ABC có
góc H = góc A (=90 độ)
góc ABC chung
suy ra tam giác HBA đồng dạng với tam giác ABC
b) Áp dụng định lyd Pi ta go vào tam giác vuông ABC có
BC^2= AB^2+AC^2
BC^2=12^2+16^2
BC^2 = 400
BC=căn 400 = 20 cm
+ Ta có tam HBA đồng dạng vs tam giác ABC (cmt)
suy ra HA/AC=BA/BC(t/c 2 tam giác đồng dạng)
suy ra HA/16=12/20
SUY RA HA=(16*12)/20 =9,6cm
c) ta có DE là tia phân giac
suy ra AE/EB=AD/BD 1
VÌ DF là tia p/g
suy ra FC/FADC/AD 2
TỪ 1,2 suy ra EA/EB *DB/DC*EC/FA
suy ra EA/EB*DB/DC*FC/FA =1(đfcm)
ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(BC^2=10^2-6^2=64\)
=>\(BC=\sqrt{64}=8\left(cm\right)\)
Xét ΔABC có AD là phân giác
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)
=>\(\dfrac{BD}{6}=\dfrac{CD}{10}\)
=>\(\dfrac{BD}{3}=\dfrac{CD}{5}\)
mà BD+CD=BC=8cm
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{BD+CD}{3+5}=\dfrac{8}{8}=1\)
=>\(BD=3\cdot1=3\left(cm\right);CD=5\cdot1=5\left(cm\right)\)
a: \(BC=\sqrt{9^2+6^2}=3\sqrt{13}\left(cm\right)\)
\(AH=\dfrac{AB\cdot AC}{BC}=\dfrac{6\cdot9}{3\sqrt{13}}=\dfrac{18\sqrt{13}}{13}\left(cm\right)\)
b: Xét ΔEBF vuông tạiE và ΔEDC vuông tại E có
\(\widehat{EBF}=\widehat{EDC}\)
Do đó: ΔEBF\(\sim\)ΔEDC
d: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔBAD=ΔBED
Suy ra: BA=BE và DA=DE
Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
DO đó: ΔADF=ΔEDC
Suy ra: AF=EC
=>BF=BC
=>ΔBFC cân tại B
mà BD là đường phân giác
nên BD la đường cao
a: BC=10cm
Xét ΔBAC có BD là phân giác
nên AD/AB=CD/BC
=>AD/3=CD/5
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{8}{8}=1\)
Do đó: AD=3cm; CD=5cm
b: Xét ΔABC vuong tại A có AH là đường cao
nên \(AB^2=BH\cdot BC\)
c: Xét ΔABI và ΔCBD có
\(\widehat{ABI}=\widehat{CBD}\)
\(\widehat{BAI}=\widehat{BCD}\)
Do đó: ΔABI\(\sim\)ΔCBD
a, Áp dụng định lí Pytago cho tam giác ABC vuông tại B ta có :
\(AC^2=AB^2+BC^2=9+16=25\Rightarrow AC=5\)cm
b, Vi BI là đường phân giác ^B nên
\(\frac{AB}{BC}=\frac{AI}{IC}\)( tính chất )
mà \(AI=AC-IC=5-IC\)
\(\Rightarrow\frac{3}{4}=\frac{5-IC}{IC}\Rightarrow IC=\frac{20}{7}\)cm
b, Xét tam giác BAC và tam giác HBC ta có :
^ABC = ^BHC = 900
^C _ chung
Vậy tam giác BAC ~ tam giác HBC ( g.g )