Cho tam giác ABC vuông tại A có góc B= 50 độ nội tiếp (O,4cm) . Vẽ dây AD vuông AB tại I
a) C/m ba điểm B , I , C thẳng hàng
b) Giải tam giác vuông ABC
c) C/m IB.IC=IA.ID
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1: ΔABC vuông tại A
nên ΔABC nội tiếp đường tròn đường kính BC
=>O là trung điểm của BC
ΔOAD cân tại O
mà OI là đường cao
nên I là trung điểm của AD
Xét ΔABC vuông tại A có AI là đường cao
nên \(IA^2=IB\cdot IC\)
=>\(IA\cdot ID=IB\cdot IC\)
2:
a: AB=AC
OB=OC
Do đó: AO là đường trung trực của BC
=>AO vuông góc BC tại trung điểm của BC
=>AO vuông góc BC tại H và H là trung điểm của BC
b: Xét (O) có
\(\widehat{BAC}\) là góc nội tiếp chắn cung BC
Do đó: \(\widehat{BOC}=2\cdot\widehat{BAC}=120^0\)
ΔOBC cân tại O
mà OH là đường cao
nên OH là phân giác của góc BOC
=>\(\widehat{BOH}=\dfrac{120^0}{2}=60^0\)
c: Xét ΔAHB vuông tại H có
\(sinB=\dfrac{AH}{AB}\)
=>\(\dfrac{6}{AB}=\dfrac{\sqrt{3}}{2}\)
=>\(AB=4\sqrt{3}\left(cm\right)\)
=>\(BC=4\sqrt{3}\left(cm\right)\)
\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot6\cdot4\sqrt{3}=12\sqrt{3}\left(cm^2\right)\)
a: Sửa đề: vẽ dây AD vuông góc với đường kính của (O) tại I
ΔABC vuông tại A
=>ΔABC nội tiếp đường tròn đường kính BC
=>BC là đường kính của (O)
mà AD vuông góc với đường kính của (O)
nên AD\(\perp\)BC tại I
=>B,I,C thẳng hàng
b: BC=2*OB=8cm
ΔABC vuông tại A
=>\(\widehat{ABC}+\widehat{ACB}=90^0\)
=>\(\widehat{ACB}=90^0-50^0=40^0\)
Xét ΔABC vuông tại A có \(sinACB=\dfrac{AB}{BC}\)
=>\(\dfrac{AB}{8}=sin40\)
=>\(AB\simeq5,14\left(cm\right)\)
ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC=\sqrt{8^2-5.14^2}\simeq6,13\left(cm\right)\)
c: ΔOAD cân tại O
mà OI là đường cao
nên I là trung điểm của AD
ΔABC vuông tại A có AI là đường cao
nên \(AI^2=IB\cdot IC\)
=>\(IB\cdot IC=IA\cdot ID\)