Cho hình thang MNEF có MN//EF biết góc N=góc E và 5 lần góc N= 4 lần góc F. Tính số đo các góc trong hình thang
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: NF=15cm
Xét ΔMNF vuông tại M có sin MFN=MN/NF=3/5
nên góc MFN=37 độ
=>góc MNF=53 độ
\(MO=\dfrac{9\cdot12}{15}=\dfrac{108}{15}=7.2\left(cn\right)\)
\(FO=\dfrac{12^2}{15}=9.6\left(cm\right)\)
b: Xét ΔMFN và ΔFEM có
góc MFN=góc FEM
góc FNM=góc EMF
Do đó: ΔMFN đồng dạng với ΔFEM
Suy ra:MF/FE=MN/MF
hay \(MF^2=MN\cdot FE\)
1)
a) Áp dụng định lí Pytago vào ΔMNF vuông tại M, ta được:
\(NF^2=MF^2+MN^2\)
\(\Leftrightarrow NF^2=9^2+12^2=225\)
hay NF=15(cm)
Xét ΔMNF vuông tại M có
\(\sin\widehat{MFN}=\dfrac{MN}{NF}=\dfrac{9}{15}=\dfrac{3}{5}\)
hay \(\widehat{MFN}\simeq37^0\)
\(\Leftrightarrow\widehat{MNF}=53^0\)
Bạn đổi E thành M, F thành N nha
Kẻ MH vuông góc với BC
=>MN là khoảng cách từ M đến BC
Theo đề, ta có: MH=MA=MD=AD/2
=>ΔHAD vuông tại H
Xét ΔMDC vuông tại D và ΔMHC vuông tại H có
MC chung
MD=MH
Do đó: ΔMDC=ΔMHC
=>CD=CH
Xét ΔMAB vuông tại A và ΔMHB vuông tại H có
MH chung
MA=MH
Do đó: ΔMAB=ΔMHB
=>AB=BH
HB+HC=BC
=>AB+DC=BC
=>AB+DC=10cm
=>MN=1/2(AB+CD)=5cm
MN//EF
=>\(\widehat{N}+\widehat{E}=180^0\)
mà \(\widehat{N}=\widehat{E}\)
nên \(\widehat{N}=\widehat{E}=\dfrac{180^0}{2}=90^0\)
\(5\cdot\widehat{N}=4\cdot\widehat{F}\)
=>\(\widehat{F}=\dfrac{5}{4}\cdot\widehat{N}=\dfrac{5}{4}\cdot90=112.5^0\)
MN//EF
=>\(\widehat{M}+\widehat{F}=180^0\)
=>\(\widehat{M}=180^0-112.5^0=67.5^0\)